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Abstract

Side channels are channels of implicit information flow that can be used to find

out information that is not allowed to flow through explicit channels. This thesis

focuses on network side channels, where information flow occurs in the TCP/IP

network stack implementations of operating systems. I will describe three new types

of idle scans: a SYN backlog idle scan, a RST rate-limit idle scan, and a hybrid

idle scan. Idle scans are special types of side channels that are designed to help

someone performing a network measurement (typically an attacker or a researcher)

to infer something about the network that they are not otherwise able to see from

their vantage point.

The thesis that this dissertation tests is this: because modern network stacks have

shared resources, there is a wealth of information that can be inferred off-path by

both attackers and Internet measurement researchers. With respect to attackers, no

matter how carefully the security model is designed, the non-interference property
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is unlikely to hold, i.e., an attacker can easily find side channels of information

flow to learn about the network from the perspective of the system remotely. One

suggestion is that trust relationships for using resources be made explicit all the way

down to IP layer with the goal of dividing resources and removing sharendess to

prevent advanced network reconnaissance. With respect to Internet measurement

researchers, in this dissertation I show that the information flow is rich enough to

test connectivity between two arbitrary hosts on the Internet and even infer in which

direction any blocking is occurring.

To explore this thesis, I present three research efforts:

• First, I modeled a typical TCP/IP network stack. The building process for this

modeling effort led to the discovery of two new idles scans: a SYN backlog idle

scan and a RST rate-limited idle scan. The SYN backlog scan is particularly

interesting because it does not require whoever is performing the measurements

(i.e., the attacker or researcher) to send any packets to the victim (or target)

at all.

• Second, I developed a hybrid idle scan that combines elements of the SYN

backlog idle scan with Antirez’s original IPID-based idle scan. This scan en-

ables researchers to test whether two arbitrary machines in the world are able

to communicate via TCP/IP, and, if not, in which direction the communica-

tion is being prevented. To test the efficacy of the hybrid idle scan, I tested

three different kinds of servers (Tor bridges, Tor directory servers, and normal

web servers) both inside and outside China. The results were congruent with

published understandings of global Internet censorship, demonstrating that the

hybrid idle scan is effective.

• Third, I applied the hybrid idle scan to the difficult problem of characterizing

inconsistencies in the Great Firewall of China (GFW), which is the largest

vii



firewall in the world. This effort resolved many open questions about the

GFW.

The result of my dissertation work is an effective method for measuring Internet

censorship around the world, without requiring any kind of distributed measurement

platform or access to any of the machines that connectivity is tested to or from.
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Chapter 1

Introduction

A fundamental limitation of most network and Internet measurement techniques is

that, in order to receive the answers in response to probes and measure something

about the network, it is necessary for whomever is carrying out the measurements

to use their own return IP address for all probes sent. Otherwise, the responses

to the probes will not be seen by the measurement machine. For attackers (or,

penetration testers) this means that they must reveal the origin of their scans and it

also means that they can only learn about the network from their own vantage point.

For Internet measurement researchers, this means that we can only learn about the

Internet from the perspective of virtual private services (VPS) or distributed research

environments (e.g. DIMES [62], MLab [63], or PlanetLab [77]) or, in the case of

Internet censorship studies, informed volunteers that are eager to participate in these

studies. In this dissertation, I propose a different approach: to learn something about

the network in between A and B, cause A and B to send packets to each other by

sending probes with spoofed return IP addresses, and then use side channels in their

TCP/IP network stacks to infer something about their communication with each

other. Thus, A and B can be virtually any machines on the Internet and need not

be under the researchers’ control. This is important, because the most important
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Chapter 1. Introduction

regions of the Internet to measure regarding Internet freedom issues (e.g., Asia, the

Middle East, Africa, Eastern Europe, and South America) are precisely the same

regions where VPSes and research infrastructure vantage points such as PlanetLab,

MLab, or DIMES are not widely available.

The first main chapter of this dissertation focuses on idle scan attacks. An idle

scan is a type of network scan. Network scans can be used to learn valuable informa-

tion about a network, such as what targets are available and what services they offer.

Idle port scanning uses side-channel attacks to bounce scans off of a bystander host

to stealthily scan a target IP address or infer IP-based trust relationships between

the bystander and the target IP address. Idle scans can be used to hide the origin of

a scan, to infer trust relationships and firewall rules, and to reveal hidden networks

and hosts. After Antirez proposed the first idle scan in 1998 [12], my dissertation

work was the first study to model idle scans, as well as the first to discover new idle

scans and apply them to real world problems.

The second and third main chapters of this dissertation focus on applying idle

scans for Internet measurement research. This poses new challenges, because while

idle scan attacks need not respect the network resources of others, idle scans designed

for Internet measurment use by ethical researchers must not fill buffers or otherwise

use resources in a way that would deny service to other users. Furthermore, the

Internet is extremely noisy: Internet hosts are rarely completely idle and packet loss

in intercontinental paths is normal.

At a fundamental level, this thesis is about programming a “weird machine” [19]

that was not intended to be programmed. TCP/IP channels are a unique kind

of “weird machine” because information flow must be caused to occurr with care-

fully crafted sequences of packets. My contribution to the field of computer science

touches on one of the most basic research questions of computer science: how to

program machines that are challenging to program. For early machines and today’s

2



Chapter 1. Introduction

novel computing paradigms such as biological or quantum computers, the challenges

in programming machines arise from the physical aspects of the machine. For “weird

machines” in the context of computer security and network measurement research,

the challenge arises because the machines that are being programmed (e.g., TCP/IP

network stacks) are not intended to be programmed in the way that my work pro-

grams them (e.g., by sending a carefully crafted sequence of packets to perform a

measurement and cause the answer to be sent back to the measurement machine).

There are three main research challenges that I address in this thesis: (1) Can a

host on the Internet be scanned without sending (spoofed) packets to it? (see Chap-

ter 3); (2) Is it possible to find out whether packets are being dropped between two

arbitrary IP addresses without having access to either one of them? (see Chapter 4);

(3) To demonstrate the power of our hybrid idle scan: can we detect Internet cen-

sorship in China for Tor relays via idle scans and identify geographic correlations?

(see Chapter 5)

1.1 Dissertation Overview

In Chapter 2, I begin by describing our threat model and provide the technical

background of IPID idle scans.

Next, in Chapter 3, I proceed by presenting our results from building a transition

system model of a network protocol stack for an attacker, a victim, and a zombie. I

describe two new idle scans which resulted from our modeling effort, based on TCP

RST rate limiting and SYN backlogs, respectively. Through experimental verification

of these attacks, I show that it is possible to scan victims which the attacker is not

able to route packets to, meaning that protected networks or ports closed by firewall

rules can be scanned [34].

3



Chapter 1. Introduction

In Chapter 4, I describe a new form of idle scan known as the hybrid idle scan,

which can be used to remotely detect intentional packet drops on the Internet. That

is, given two arbitrary IP addresses on the Internet that meet some simple require-

ments, our proposed technique can discover packet drops (e.g., due to censorship)

between the two remote machines, as well as infer in which direction the packet drops

are occurring [33].

After discovering and verifying our novel and practical idle scan, I used it to

characterize observed inconsistencies in the Great Firewall of China (GFW). Past

work has revealed that the firewall sometimes fails. In other words, sometimes clients

in China are able to reach blacklisted servers outside China. This phenomenon has

not yet been characterized because it is infeasible to find a large and geographically

diverse set of clients in China from which to test connectivity. In Chapter 5, I

overcome this challenge using our novel hybrid idle scan technique that is able to

measure the connectivity between a remote client and an arbitrary server, neither of

which are under the control of the researcher performing measurements [35].

After having presented the main contributions of this thesis, Chapter 6 gives

an overview of relevant related work in the fields of network security and Internet

measurement. Chapter 7 discusses ethical implications of our experiments.

Finally, Chapter 8 concludes this thesis by discussing our results and future work

in the field.

4



Chapter 2

Background and Context1

2.1 Interaction Modeling Efforts

Throughout the process of developing this research, we adapt an interaction model

consisting of three hosts: attacker, victim, and zombie 2. We define a host to be at

the edge of the Internet, i.e., an end host. Hosts exhibit internal state, such as a SYN

backlog, the IP identification field variable (IPID), and receive buffers for incoming

network traffic. Hosts also have ports which can be open, closed, or filtered and their

status does not change during measurements. An open port is a TCP port for which

the host will accept incoming TCP connections. For UDP, open ports simply drop

packets and closed ports respond with ICMP error messages. Filtered ports behave

just like a typical host but for simplicity only ports that are either open or closed

and never filtered are considered in our model. Hosts reply to packets based on rules

that model a typical Linux or FreeBSD network stack. Our model is based on the

1Since this research was performed with the help of collaborators, I have adopted using
“we” instead of “I” in Chapters 2 through 6.

2Antirez [12] who proposed the first type of idle scan used attacker, victim, and zombie
that we also use in Chapter 2 and 3. However, we use measurement machine as an attacker,
server as a victim and client as a zombie in Chapter 4 and 5.

5



Chapter 2. Background and Context3

IP protocol and includes TCP (but only up to the point of half-open connections),

ICMP, and UDP.

The SYN backlog of a host is a backlog for half-open TCP connections for which

a SYN/ACK has been sent and the host is waiting for an ACK to complete the three-

way handshake. The SYN backlog drops duplicate SYNs for the same IP address

and port pairs. In our model packets are only removed from the SYN backlog when a

TCP RST is received from the source IP address and port of the original SYN packet

(because we only model half-open TCP/IP connections, so there is no ACK for the

third part of a three-way TCP handshake). When the SYN backlog is full, the host

replies with a SYN cookie and drops the SYN. A SYN cookie is a method for sending

an initial sequence number in the SYN/ACK that, when ACKed by the remote host,

contains enough information to complete the connection so that no state about the

half-open connection needs to be kept in memory [16].

The IP identification field (IPID) is a 16-bit value that is assigned to every IP

packet created by a host in order to uniquely identify fragments of an original IP

packet. Traditionally, this value is sequentially incremented whenever a packet is

sent by the host. However, many operating systems changed the implementation

of the IPID to hold randomly generated values instead. Although in practice, as

shown in [40], many operating systems still employ incrementally increasing IPIDs.

An incrementally increasing IPID is required for the IPID idle scan to work which

will be explained in the following section.

Figure 2.1 shows the basic definition of an idle scan that we use for our model.

The diagram contains four boxes, three of which are the attacker, the zombie, and

the victim host. The fourth box describes the absence of a host so all packets to

it are dropped. A solid arrow denotes that the source host can send packets to the

destination using its own return IP address. A dashed arrow indicates that the source

host can send a packet to the destination using any return IP address other than its

6



Chapter 2. Background and Context4

Attacker

No host

Victim Zombie

Figure 2.1: Basic definition of an idle scan. Dashed lines represent IP communication
with spoofed source IP addresses whereas solid lines represent IP communication with
unspoofed IP addresses.

own. The salient feature of this definition of an idle scan is that the attacker cannot

send packets to the victim using its own return IP address. This entails that the

victim never sends any packets to the attacker, and that the attacker therefore only

ever receives packets from the zombie, since the victim and zombie only ever reply

to packets using their real IP address as the return address.

Our goal is to ensure that the network satisfies the non-interference property,

i.e., an attacker cannot gain any information if this property holds. A network that

satisfies the non-interference property is defined as: for any possible sequence of

packets that the attacker can send to the victim and zombie, the sequence of packets

the attacker receives in response is identical regardless of whether the victim’s port is

open or closed. This definition models the desired behavior that the attacker cannot

gain any information about the target victim’s port.

We reach our goal by implementing two possible scenarios faced by the attacker

which the attacker is attempting to distinguish and thus gain information about the

7



Chapter 2. Background and Context5

victim. In each scenario, there is a victim and a zombie whose behavior and initial

state are identical (except for either the status of the target port on the victim or

censorship between victim and zombie, of course), but whose behavior and internal

state over time can differ between scenarios through certain sequences of events due

to the port status of the target port. The attacker sends identical packets in both

scenarios.

Victim 1 Victim 2 Zombie 1 Zombie 2

Attacker

PacketA1

PacketA2

Figure 2.2: Overview of our model (the IP address with no host that drops all packets
is excluded from this figure for clarity).

Figure 2.2 gives an overview of our interaction model for testing non-interference

properties of network stacks for idle scans. The status of the target port or the exis-

tence of censorship between zombie and victim is modeled as two different scenarios.

Victim 1 and Zombie 1, for example, exist in scenario 1 where the target port on

Victim 1 is open. Victim 2 and Zombie 2 exist in scenario 2 where the target port

on Victim 2 is closed. The attacker can forge any arbitrary sequence of packets,

8



Chapter 2. Background and Context6

but it must forge identical packets in both scenarios. The hosts in the different sce-

narios can respond differently and contain different internal state. PacketA1 and

PacketA2 are the sequence of packets the attacker receives in scenario 1 and scenario

2, respectively.

In our model, the attacker can choose any arbitrary sequence of packets non-

deterministically that do not violate the definition of an idle scan. Furthermore, the

attacker does not need to reply to packets; the fact that the model allows the attacker

to send arbitrary packets covers all possibilities for replies. For the destination and

return IP addresses of a packet, the attacker can choose among its own IP address,

that of the victim or the zombie, or an IP address with no live host (that simply

drops all packets). The only constraint is that the attacker cannot send a packet

to the victim with its own IP address as the return IP address as this violates the

definition of an idle scan.

The attacker can distinguish between TCP segments employing SYN cookies and

segments using regular SYN/ACKs that it receives in our model. This assumption

holds in practice because of the statistical properties of the initial sequence numbers

of SYN cookies and the fact that SYN cookies are never retransmitted whereas

regular SYN/ACK segments are.

The attacker can further choose any value for the IP protocol (TCP, UDP, or

ICMP), TCP flags, source and destination ports, validity of checksums, and so on.

Every packet that the attacker forges is forwarded to the appropriate host in both

scenarios.

In Chapter 3, we demonstrate the existence of two novel idle scans and explore

their properties by model checking for a non-interference property over this model.

One idle scan is based on a host’s SYN backlog and the other on RST or ICMP

rate limitations. The latter requires relatively high packet rates or the use of the

9



Chapter 2. Background and Context7

frequently filtered ICMP protocol, so for Chapter 4 and Chapter 5 we focus on

the SYN backlog idle scan combined with IPID idle scan. We also demonstrate both

attacks using real machines and give more technical details about the protocol stacks

of various versions of Linux, FreeBSD, and Windows.

2.2 IPID Idle Scans

Similar to virtually all side channel attacks, idle scans are associated with shared,

limited resources. Figure 2.3 illustrates an example of the original idle scan discovered

by Antirez in 1998 [12] and presented on the bugtraq mailing list. The technique is

described in more detail by Lyon [58].

Attacker Victim1Victim2Zombie2 Zombie1

Closed ScenarioOpen Scenario

Time

SYN/ACK SYN/ACK

SYN SYN

SYN/ACK

RST

IPID =1380

IPID =1381

IPID =1382

IPID =1383

SYN/ACK SYN/ACK

RST

RST

RST

RST

IPID =1380

IPID =1381

IPID =1382

Figure 2.3: The original IPID idle scan discovered by Antirez in 1998. The attacker
is able to scan a victim’s port without directly communicating with it.
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In the original form of the idle scan (shown in Figure 2.3), the attacker queries the

zombie for IP packet responses and observes the sequence of IPIDs in the zombie’s

responses. The attacker then sends one or more SYN packets to the victim on the

target port to be scanned with the return IP address pointing to the zombie and the

return port pointing to a closed port on the zombie. If the victim replies to the SYN

with a SYN/ACK, meaning the victim’s port is open, then the zombie will reply to

the victim with a TCP reset (RST) and the attacker will observe a discontinuity in

the sequence of IPIDs that it receives from the zombie. If the victim’s port is closed,

the SYN is dropped or replied to by the victim with a RST, which the zombie simply

drops and no discontinuity is observed by the attacker. Thus, the attacker is able

to infer the port status of the victim without revealing their return IP address to

the victim. Furthermore, the attacker is able to infer trust relationships between the

victim and the zombie. For example, the attacker might infer that the victim only

accepts connections from a particular trusted subnetwork by using a zombie on that

subnetwork.

11



Chapter 3

Idle Scanning and

Non-interference Analysis of

Network Protocol Stacks

As mentioned in Chapter 1, by scanning the network, the attacker is able to gain

valuable information about the hosts that exist and the services they offer, infer

IP-based trust relationships between hosts that are enforced by firewall rules and

router tables, and collect other information that they can use in the next stage of

attack. In this chapter, we show that model checking can be a useful framework

for predicting and mitigating attacker capabilities. In idle scans, an attacker scans

a victim without sending packets to that victim using its own return IP address.

The model of idle scans that we describe in this chapter led to the discovery of two

new forms of idle scan.1 One of these, based on SYN backlog structures that are

common to all modern network stacks, gives an attacker capabilities beyond the one

1These counterexamples were discovered during the process of deciding what details to
include in the model, so resulted from the modeling effort but were not unexpected results
from the model checker itself.
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previously known form of idle scan in the literature. The other one is based on RST

rate limiting that is limit a host to only send a finite number of RST per second.

Finally, we demonstrate that if a distinction between trusted and untrusted hosts

were made explicit in the lower layers of the network protocol stack, then separate

RST rate limitations and a split SYN backlog structure eliminates these attacks in

our model of network stacks, which is complex enough to model all of the details of

each attack.

3.1 Introduction

The two new forms of idle scan that have resulted from the model checking effort

presented in this chapter are based on RST rate limiting and SYN backlogs, respec-

tively. These were discovered during the process of building the model and manifest

as counterexamples to a non-interference property that are produced by the model

checker. In the RST rate limiting counterexample, the zombie in this case is a

FreeBSD machine that limits the number of RST packets that it will send in a given

time period. The attacker can infer the port status of the victim by testing the rate

at which the zombie will reply with RST packets, the details of this are in Section 3.4.

The SYN backlog counterexample is different from the existing IPID-based idle

scan, which is described in Chapter 2.2, in that the attacker never sends (spoofed)

packets to the victim. Instead the attacker forges SYN packets from the victim to

the zombie, and the zombie sends a SYN/ACK to the victim and places these SYN

packets in its SYN backlog (a data structure for holding half-open TCP connections

for which a SYN/ACK has been sent but an ACK response has yet to arrive). Be-

cause RSTs and ICMP errors from the victim will cause this SYN backlog entry to

be removed, the attacker can effectively perform a SYN/ACK scan of the victim

without needing the ability to route packets to the victim. The attacker does this

13
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by testing the state of the SYN backlog by sending SYNs with its own return IP

address and viewing the SYN/ACK responses. The replies of the victim probes can

be inferred from the attacker’s ability to get SYN backlog entries for its own SYNs.

This makes possible testing for the liveness of IP addresses on protected networks

with a rudimentary form of OS detection, and even port scanning on certain types

of hosts on a port that is entirely blocked by a firewall. More details are given in

Section 3.4.

Like virtually all side-channel attacks, idle scans are associated with shared, lim-

ited resources. Because these resources generally cannot be made unlimited, we

recommend in light of our results that trust relationships between hosts be made

explicit to those hosts all the way down to the IP layer. Currently the only distinc-

tion at the TCP and IP layers is subnetworks, which do not necessarily correspond

to the IP-based trust relationships between hosts that are enforced by firewall rules

and routing tables. Trusted hosts can be hosts protected by the same firewall or

that have special trust relationships in the packets they can route to each other. By

making a distinction between trusted and untrusted hosts non-interference can be

achieved by statically dividing shared resources, effectively eliminating idle scans.

We verify non-interference for our model with separate RST rate limitations using

symbolic model checking. Then we demonstrate that our split SYN backlog struc-

ture using bounded model checking to a depth of 1000 transitions has no violations

of non-interference. This means that no practical attack for this counterexamples

exists within the constraints of our model.

This chapter is organized as follows. Our model is described in Section 3.3,

followed by a description of the counterexamples discovered during the process of

building the model and some experimental results from their implementation in Sec-

tion 3.4. We demonstrate that non-interference is achievable by distinguishing be-

tween trusted and untrusted hosts in Section 3.4.3. This is followed by discussion
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and future work in Section 3.5. Chapter 6 provides more background and related

works.

3.2 Background

Non-interference [41] is a widely used concept of information flow security that has

seen wide application for proving security properties of programs. The works that

are most related to ours in this space are those that treat non-interference as two

or more separate scenarios that must produce the same result from the attacker’s

view for non-interference to be demonstrated, e.g., TightLip [112] or the work of

McCamant and Ernst [66, 67]. We apply non-interference to network stacks in this

chapter. Non-interference proved to be a very fruitful model of information flow

in this context, but for future work that might consider packet loss, packet delay,

and other such factors, alternatives such as non-deducibility [94] may be necessary.

For the modeling effort presented in this work, which is based on an abstracted

model of real networks that does not include packet loss and delay, non-interference

proved to be a very useful property because it can be specified with Linear Temporal

Logic (LTL). Treating the problem as a covert channel problem and studying object

storage [49] and timing channels [108] is an attractive approach, but covert channel

models assume collusion of the sender and receiver of information and do not capture

in their models the sequences of events necessary to describe idle scans in a natural

way.

The model checker that we chose for our study is the Symbolic Analysis Labora-

tory (SAL) [15]. SAL provides a SAT-based bounded model checker that allows for

counterexamples to be easily interpreted as a trace through the states of the model,

or, in our case specifically, a sequence of packets. SAL also provides a BDD-based

symbolic model checker. Model checking has been applied to many properties of
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network protocols and their implementations where specific bugs lead to security

vulnerabilities or availability issues, (e.g., [31, 81, 43]). We have particularly pat-

terned our analysis following Rushby’s tutorials for modeling the Needham-Schroeder

protocol [83] to identify Lowe’s bug and the fault-tolerant algorithm for maintain-

ing interactive consistency (Byzantine agreement) [84] as the transition systems for

these problems seem similar to the ones for modeling port scanning and side-channel

attacks in a protocol stack. Our results demonstrate that model checking is also

useful for studying information flow on networks, particularly in this chapter within

the context of idle port scans.

3.3 Formalizing Non-interference Analysis of Idle

Scans

After establishing our network stack model that is described in Section 2.1 , in this

section we describe more details and its implementation in SAL, and finally we list

simplifying assumptions of the model.

3.3.1 SAL for Modeling, Counterexamples, and Verification

We model the network stack as a transition system. At an informal, high level,

a transition system specifies computation as a sequence of transitions in a state

machine. A state is given by the values of the local variables used to describe

transitions. A transition system has an initial state. For every transition, there

is an optional guard, which when true in the current state, leads the computation

from the current state to the next state. For a nondeterministic transition system,

multiple transitions may be triggered and one transition is randomly selected. This

is repeated and the computation terminates if no guard is true in the current state.
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Dijkstra’s guarded command language [27] is an example of a formalism for specifying

transitions.

We used SAL (Symbolic Analysis Laboratory) for specifying the transition system

and analyzing its properties. SAL is a language and a tool kit for specifying transition

systems and analyzing them using model checking. SAL provides support for a suite

of tools which have been successfully used for analyzing protocols and distributed

algorithms (see [86]).

Figure 3.1 shows the outline of our SAL code for the model. Ellipses indicate

where detailed code has been omitted, the full model is 895 lines of SAL code.

For a transition step, a nondeterministic choice is made between the attacker,

victim, or zombie. If the attacker is chosen, it forges a nondeterministic packet,

which can be a “drop” packet that has no effect. This packet is placed in the receive

queue of the destination IP address. If the victim or zombie is chosen, it removes the

next packet from its FIFO receive queue and replies based on its internal state and

configuration. The functions ProperReply and UpdateSynbacklog are responsible

for choosing the packet to reply with, if any, and any updates to the host’s internal

state (specifically the RST counter and SYN backlog). Note that these are pure

functions and do not update any state themselves.

Figures 3.2 and 3.3 show how the ProperReply and UpdateSynbacklog functions

are used. A transition has a guard, e.g., “(z1.fullness /= 0 AND z2.fullness /=

0 ) -->”, which is a quantifier-free formula specifying a condition on the current

state and must hold before the transition is executed, and then a formula relating the

current state with the next state. An example of such a formula is “z1’.fullness =

z1.fullness - 1”, where z1’ is the variable in the next state and z1 is the variable

in the current state. In this example the variable will be decremented by 1 in the

next state.
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When the guard on a transition for the zombie or victim fires, that host must

remove a packet from its queue and then reply and update its state in both scenarios.

UpdateSynbacklog returns not only the new state of the SYN backlog, but also

a variable called .synPIsThere which can take on the values put, notexist, or

exist. This return value is passed to ProperReply, which needs to know if a SYN

packet was put in an entry in the SYN backlog, no entry was found for it because

the SYN backlog is full, or it already existed in the SYN backlog. In this way

ProperReply knows whether to send a SYN/ACK, send a SYN cookie, or drop the

packet, respectively, if the packet is a SYN.

For example, if the zombie in one of the scenarios receives a SYN packet, it calls

UpdateSynbacklog to determine the new state of the SYN backlog and what will

happen to the packet. If the internal state of the zombie indicates that there is a

free entry in the SYN backlog, the fact that the SYN will be placed in the SYN

backlog and the new status of the SYN backlog are returned by this function. Then

ProperReply is called with this information as an argument, and this function will

determine that the proper reply is a normal SYN/ACK, with the destination IP

address as the source of the SYN, valid checksums, etc.

Another example is that a host (a victim or zombie) receives a SYN/ACK.

UpdateSynbacklog returns the current state (i.e., no changes will be made to

the SYN backlog state) and then ProperReply will be called and will ignore

.synPIsThere because the packet is not a SYN. The return value of ProperReply

depends on the RST counter. If the RST counter is non-zero the return value of

ProperReply will be a RST packet that the zombie will use for a reply and a re-

duced RST counter. If the RST counter is already zero, ProperReply will return a

drop packet and zero still for the RST counter. All possible TCP, UDP, or ICMP

packets and their corresponding replies are enumerated in ProperReply based on

the reply that a typical network stack would send.
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By forcing the zombies or the victims in both scenarios to reply at the same

time step, the model stays in sequence. If a host in one scenario (e.g., the victim

in the closed port scenario) replies to a packet whereas the corresponding host in

the other scenario (e.g., the victim in the open port scenario) drops the packet, a

“drop” entry is inserted in the destination host’s queue as a filler and eventually

ignored. This ensures that the packets that are received by the attacker vary only

when non-interference is violated, i.e., only when the sequence diverges.

SAL supports a suite of tools; the ones most relevant for the analysis discussed

in this chapter include a deadlock checker, a symbolic model checker for finite state

systems based on the CUDD BDD package, and a bounded model checker based

on the Yices SAT solver. Properties of a transition system are specified in Linear

Temporal Logic (LTL). Our analysis involved using properties of the form G(α),

where α is a quantifier-free, modality free formula expressed using state variables,

to mean that α holds in every state of the transition system. The non-interference

property is specified as:

� G(PacketA1 = PacketA2)

This means that the sequence of packets the attacker receives in response to its

probes from the zombie in the first scenario is always identical to the response from

the zombie in the second scenario.

We have used SAL’s bounded model checker for finding counterexamples as it is

depth-first and explicitly enumerates states. SAL’s symbolic model checker, which

is exhaustive, is useful for finding smaller counterexamples as well as for proving

properties of interest, which are often difficult to do by explicit state enumeration

model checkers. A useful comparative study of exhaustive symbolic model checkers

19



Chapter 3. Idle Scanning and Non-interference Analysis of Network Protocol Stacks

and explicit state enumeration model checkers is in [22] for protocol analysis and

controllers.

3.3.2 Assumptions to Reduce the Number of Model States

A number of assumptions were made to keep our model simple. Our strategy was to

start with a simple model and introduce additional complexity into the model if no

counterexamples are generated, and ensure that the abstractions we made caused no

loss of generality that would exclude potential counterexamples.

A major abstraction in the model considers the proper reply to SYN/ACK packets

to be “drop” for open ports and RST for closed ports. In reality, network stacks that

respond differently to SYN/ACKs on open vs. closed/filtered ports typically respond

with RSTs or ICMP and have different rate limits per port. Since the lower rate

limit (typically ICMP) will cause drops before the higher rate limit, without loss of

generality, we can consider open ports to simply drop SYN/ACK packets from the

initial state. This is equivalent to assuming that the attacker immediately exhausts

the lower rate limit.

We also exclude ICMP and UDP from the split SYN backlog version of our model.

Since ICMP host error packets have the same effect on the SYN backlog as RSTs,

and other ICMP and UDP packets make no relevant changes to the destination host’s

TCP state, ICMP and UDP do not affect the non-interference property for the SYN

backlog structure. Invalid checksums in packet headers are also excluded, because

they are dropped without affecting the state of the destination host in all cases.

Another major abstraction is that each of the two buffers in our split SYN backlog

has only a single entry. There are three reasons why only a single entry in the SYN

backlog is necessary in the model:
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• Pending entries in the SYN backlog with source IP addresses and ports (possi-

bly spoofed by the attacker) that correspond to invariant ports (that have the

same status in both scenarios) cannot cause divergence in the internal state

of any of the hosts in the two scenarios. Thus, no more than one such SYN

backlog entry at a time can be useful for creating a counterexample.

• Even though RST rate limiting is performed separately for open and closed

ports, the rate limit value stored by any host cannot be caused to diverge on

invariant ports. Only the target port on the victim can cause divergence. Since

only one such port exists, only one SYN backlog entry at a time can be useful

for creating a counterexample. If we had not received a counterexample under

this assumption, we would have incrementally allowed more entries in the SYN

backlog.

• While the single entry is full, the SYN cookies generated in response to dropped

SYN packets can only cause internal state differences if sent to the target port

on the victim. If this is the case then the entry in the SYN backlog cannot also

be a SYN packet with the victim IP address and target port, since duplicate

SYNs are ignored by the SYN backlog. Thus, one SYN backlog entry per trust

level (trusted and untrusted) is general enough to handle all of the cases of any

number of SYN backlog entries.

Because of the above simplification of making the SYN backlog have a single

entry for each trust level, we modeled only three ports without loss of generality.

Port 1 is prohibited (e.g. by a firewall rule) to the attacker for the split SYN backlog

implementation, meaning that the attacker cannot send packets to port 1. This was

done so that we could include the RST rate limitation, which has important interac-

tions with the SYN backlog, without receiving the RST rate limit counterexample.

Port 1 is closed in both scenarios for the zombie; however, for the victim, it is open

in one scenario and closed in the other. In other words, port 1 is the target port for
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the attacker to get information. Port 2 is closed and port 3 is open on both hosts

in both scenarios. Because closed ports are equivalent in terms of their responses, a

single closed port per host is equivalent to any number of closed ports. Because the

SYN backlog has a single entry and open ports only have different behaviors based

on the status of the SYN backlog, a single open port per host is also equivalent to

any number of open ports.

In real SYN backlog implementations, there is a timeout after which SYNs that

have not become fully open TCP connections are dropped. Because our model allows

the attacker to remove any entry from the SYN backlog at any time via a RST

packet (which is also possible in reality for Linux SYN backlog implementations),

our model need not incorporate this timeout. Also, RST rate limiting is done per

a time period in reality. A fixed limit of RSTs for an unbounded amount of time is

a generalization of this that does not exclude any counterexamples because for any

violation of non-interference based on a rate limit a single time period is enough to

create a counterexample.

3.4 Finding and Ameliorating Idle Scans

In this section, we describe the counterexamples that our modeling effort produced

and give experimental results of an implementation of these counterexamples to

demonstrate that they can indeed be used to do idle port scans.

3.4.1 Discovering Counterexamples

We now describe the two counterexamples that were discovered during the process

of developing the model.
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Port Zombie status Victim Status

1 Open Open in scenario 1,
closed in scenario 2

2 Closed Closed

3 Open Open

Table 3.1: Ports and their status in our model.

RST Rate Limiting Counterexample

When we applied SAL’s bounded model checker to a simpler model in which the
SYN backlog did not play any role, for the property “� G(PacketA1 = PacketA2)”
SAL identified a counterexample with RST counter set to 3 in the initial state. We
simplified the model further by reducing the initial value of RST counter to 1 and
still received a counterexample. The counterexample in this case was found much
more quickly, at depth 5 in the transition system.

Attacker Victim1Victim2Zombie2 Zombie1

Closed ScenarioOpen Scenario

RST count=1

RST count=0

RST count=1

RST count=0

Time

2
1

SYN SYN
1

1

2

RST

2

1
RST

2

2

SYN/ACK SYN/ACK
2

RST 2

2

SYN/ACK 1
2

Figure 3.4: RST rate limiting counterexample.

This counterexample is illustrated in Figure 3.4. The figure shows the sequence

of packets for the open vs. closed scenarios that that attacker can send to distinguish

between the scenarios. Note that the attacker sends the same sequence of packets in
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both cases. Dashed lines are spoofed packets (for Figure 3.4 the packets are spoofed

so that they appear to come from the zombie). The numbers at the bases and heads

of the arrows represent the source or destination port number, respectively. The

RST count state for a period of time is the state of that variable for each scenario.

In this example the attacker wants to discern the port status (open or closed)

of port 1 on the victim. Port 2 on the zombie is closed. The packets the attacker

sends are identical in both scenarios. The attacker cannot see the packets that are

sent between the victim and zombie or zombie and victim. The port status must

be inferred by the difference in the expected packet sequence that the attacker will

see between the two scenarios. First, the attacker forges a SYN to the victim on

the target port that appears to be from the zombie with return port 2. If the target

port on the victim is open, it will respond to the zombie with a SYN/ACK on the

zombie’s closed port 2, causing the zombie to send the victim a RST and decrement

its RST count. If the port is closed, the victim will respond to the zombie with a

RST which the zombie ignores. Next, the attacker sends a SYN/ACK packet, using

its own return IP address, to the closed port on the zombie. If the attacker receives

a RST in response, then it can infer that the victim target port status is closed since

an open port would have caused the zombie to have already reached its RST rate

limit.

SYN backlog Counterexample

For the second case, we tried a more complex model that included a SYN backlog. We

started with a SYN backlog of size 2, then simplified it further to size 1, and SAL’s

bounded model checker still identified the counterexample to the non-interference

property as illustrated in Figure 3.5.
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Attacker Victim1Victim2Zombie2 Zombie1

Closed ScenarioOpen Scenario

Time

1
SYN SYN

3 3

1 1

SYN/ACK SYN/ACK 33

RST1

3
SYN SYN

2

3 3

3 3

2

SYN cookie SYN/ACK

SYN cache=0

SYN cache=1

SYN cache=0

SYN cache=1

SYN cache=0

SYN cache=1

Figure 3.5: SYN backlog counterexample.

The relevant state in this case is the number of pending SYN/ACK entries in the

SYN backlog, with a maximum value of 1 in our model. The notable thing about

this form of idle scan is that the attacker never sends any packets to the victim, not

even packets with spoofed return IP addresses. Instead, the attacker sends a SYN to

the zombie on an open port, with the return IP address of the victim and the return

port as the target port. The zombie places this SYN packet in the SYN backlog,

which in our model has only a single entry, and sends a SYN/ACK response to the

victim. If the victim target port is closed it will send a RST in response, which

causes the zombie to remove the relevant SYN backlog entry so that there is now a

free entry in the SYN backlog. An open target port on the victim will simply drop

the SYN/ACK from the zombie, so that the SYN backlog of the zombie remains

full since the zombie is still waiting for a response to the SYN/ACK. The attacker

can then infer the status of the zombie’s SYN backlog, and therefore the victim port

status, by sending a SYN to the zombie with the attacker’s own return IP address.

A regular SYN/ACK means the SYN backlog entry was free, a SYN cookie indicates

25



Chapter 3. Idle Scanning and Non-interference Analysis of Network Protocol Stacks

that it was full.

Note that responses to SYN/ACKs on open, closed, or filtered ports vary for

different operating systems, but all that matters is that for open vs. closed or open vs.

filtered the response differs in some way under certain conditions. More discussion

of the possibilities for this is in Section 3.4.2. The SYN backlog counterexample

makes it possible to, e.g., port scan a network on a port that is blocked for the entire

network from outside the firewall. Imagine in Figure 3.5 that the zombie and victim

are behind a firewall and the attacker is outside the firewall. Even if the firewall

drops all incoming packets with destination port, e.g., 22 for Secure Shell (SSH), the

attacker can scan port 22 on the network by using other open ports. Also, there may

be firewall rules that enforce that only trusted machines (e.g., the zombie) can route

packets to the victim. In this case the victim might be an internal database server

and the zombie is the web server interface to the database, for example. Information

about what ports the victim has open might give the attacker an idea of whether

compromising the zombie to subsequently get access to the victim is worth the effort

and risk. It might also be that the attacker can route packets to the victim, but

not on the target port. For example, many machines leave certain ports open only

for their backup servers that contact them nightly. Or, the system administrator

might only allow incoming SSH sessions on their critical servers from their own office

machines and not from other IP addresses. Knowing these kinds of trust relationships

and exploiting them to find out more about the victim machines can be very valuable

to an attacker.

For each host, both the SYN backlog and the reset rate limiting variables consti-

tute shared, limited resources, which are the sources of violations of non-interference

in our two counterexamples.
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3.4.2 Experimental Confirmation of Counterexamples

We implemented both counterexamples to verify that these two new forms of idle

scan that resulted from the modeling effort were possible for real hosts. Our results

presented in this section demonstrate that the differences in the sequence of packets

the attacker sees translate from the abstract notion of non-interference in our model

to differences that can be seen in real network packet traces. Our implementations

of the two idle scans are not optimized for speed or stealth, nor do they account for

packet loss or packet delay, but in this section we discuss the practicality of these

two forms of idle scan and conclude that they are both practical.

Experimental Setup

For our experiments, we set up VirtualBox [5] virtual machines connected using

IPv4 on two different subnetworks with TUN/TAP interfaces. The attacker machine

was the host, and one subnet contained a Linux kernel 2.4 host (Fedora Core 1)

which served as the zombie for the SYN backlog idle scan implementation. The

other subnet contained a Windows XP host with no service packs, a Linux kernel

2.6 host (CentOS 5.2), and a FreeBSD 7.1.1 host. The latter served as the zombie

for RST rate limiting idle scan implementation. IP forwarding between these two

subnetworks was performed by the host. Packets were generated and captured by

separate threads using the Perl Net::RawIP and Net::Pcap libraries, respectively.

RST Rate Limiting Idle Scan Implementation

In our transition system model, RSTs are limited to a finite number for infinite time.

For a real FreeBSD system, RSTs are limited to a default of 200 per second, with

separate limitations for open and closed ports. Our implementation sends 2000 each
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Port status Mean Std. dev. Min. Max

Open 1552.1 47.0 1429 1634

Closed 2000 0 2000 2000

Table 3.2: Results from RST rate limiting idle scan implementation.

of two different types of packets, each at a rate of 180 per second, to the victim and

FreeBSD zombie, respectively. One type of packet is spoofed SYNs to the victim on

the target port that appear to be from the zombie on a port that is closed on the

zombie. The other is SYN/ACKs from the attacker to the zombie, which the zombie

should reply to with RSTs. If the zombie is sending RSTs at a rate of 180 per second

to the victim in response to the victim’s SYN/ACKs (meaning the victim target port

is open), this should interfere with the rate at which the zombie sends RSTs to the

attacker. Thus the number of RSTs the attacker receives in our experiment can be

used to infer the port status of the target port on the victim. We repeated the RST

rate limiting idle scan experiment 700 times each for an open and closed port on the

victim. The victim was a Linux kernel 2.6 virtual machine. The host-based firewalls

on both machines were disabled, although for the victim the idle scan works whether

the host-based firewall is enabled or not. For FreeBSD, RST rate limiting does not

apply to filtered ports. The pf host-based firewall is disabled by default for FreeBSD

installations.

The results from our RST rate limiting idle scan are shown in Table 3.2, where

the results are based on the number of RSTs the attacker receives. When the victim

port is closed, the attacker receives all 2000 RST responses from the zombie. When

the victim port is open, the attacker receives at most 1634 RSTs. Thus, determining

if the target port is open or closed is straightforward for idle scans based on RST

rate limiting.
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SYN Backlog Idle Scan Implementation

SYN backlog implementations vary for different operating systems2. While the SYN

backlog idle scan is possible using virtually any host as a zombie, the simplest net-

work stack to use as a zombie is Linux kernel 2.4. Linux kernel 2.4 uses a simple

buffer for the SYN backlog, with between 128 and 1024 entries depending on the

memory available on the system. Our Linux kernel 2.4 virtual machine zombie had a

SYN backlog size of 128, but Linux enforces a rule that only three fourths of the SYN

backlog can contain SYN packets from hosts that have not demonstrated their live-

ness in the recent past by completing a fully open TCP connection. This effectively

reduces the SYN backlog size to 97. We did not enable SYN cookies, which are dis-

abled by default in Linux. The attack works basically the same whether or not SYN

cookies are enabled. We ran two separate sets of experiments for the SYN backlog

idle scan implementation, one to demonstrate that it is possible for the attacker to

detect the presence of live machines and perform a rudimentary form of operating

system detection, and another to demonstrate that under certain circumstances the

attacker can infer the port status of a target port on a particular victim IP address.

For all experiments, 100 data points were generated for both open and closed port

scenarios.

For checking for liveness, we scanned four different IP addresses. One is a default

FreeBSD 7.1.1 machine (with the pf host-based firewall disabled, as is the default),

another is a Windows XP machine with no service packs (with Windows firewall

disabled, as is the default), and a third is a Linux kernel 2.6 machine (CentOS 5.2,

with iptables enabled, as is the default). The fourth IP address has no live host so

all packets are simply dropped. Forging packets from random return IP addresses

on these victims is very likely to send SYN/ACKs to closed or filtered ports, so we

2In this chapter, our analysis was performed for Red Hat based distributions circa 2010,
so may not generalize to entire Linux kernel branches.
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choose random return ports for all spoofed SYNs where the attacker uses the victim

as the return IP address. Varying this return port number is important because if the

return port is not different then the spoofed SYNs will have the same IP addresses

and ports for both the destination and source and the SYN backlog will drop such

duplicates. Both RSTs and ICMP errors cause their corresponding entries to be

removed from the SYN backlog when received by the zombie.

Because Linux responds to SYN/ACKs on filtered ports at a very low rate (about

10 per second) with ICMP host prohibited packets, FreeBSD responds to SYN/ACKs

on closed ports at a rate of at most 200 per second, Windows responds on closed ports

with RSTs at an unlimited rate—and IP addresses without live hosts simply cause

SYN/ACKs to be dropped—it is possible for the attacker to idle scan a subnetwork

and infer something about the operating systems that the live hosts discovered have

installed. To scan a single IP address, our implementation sends 50 spoofed SYNs

(that appear to be from the victim), then 50 each of spoofed SYNs and SYNs where

the attacker uses their own return IP address, and then 200 more spoofed SYNs, all

at a rate of 1000 per second. It then sends 200 each of spoofed SYNs and SYNs

where the attacker uses their own return IP address at a rate of 400 per second. The

number of SYNs where the attacker uses their own return IP address and receives a

SYN/ACK response can then be used to infer the liveness and operating system of

the IP address. The results from this experiment are shown in Table 3.3, where the

results are based on the number of SYN/ACKs the attacker receives (note that for

Linux kernel 2.4 network stacks SYN/ACKs are retransmitted five times until they

time out after 190 seconds).

Under certain circumstances, it is also possible to port scan specific ports on

a particular IP address using a SYN backlog-based idle scan. Specifically, if the

response or rates differ for open vs. closed or filtered ports on the victim then

scanning a target port is possible. Examples of this are FreeBSD with the pf host-
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Host Mean Std. dev. Min. Max

Not live 109.1 7.4 96 123

Linux 2.6 126.9 6.3 111 138

FreeBSD 300 0 300 300

Windows XP 460.3 11.9 435 477

Table 3.3: Results from SYN backlog idle scan implementation for liveness and
operating system.

based firewall disabled, where open ports and closed ports are rate-limited separately,

or Linux hosts with the iptables host-based firewall enabled and an open port that

does not use the stateful module of iptables.

To test the FreeBSD example, we developed a SYN backlog-based idle scan that

simultaneously sends 20000 spoofed SYN packets (with random return ports that

are closed on the zombie) as quickly as possible while sending, at half the rate,

alternating spoofed SYNs with the target port on the victim as the source port and

valid SYNs with the return address of the attacker. Because closed ports on the

victim are rate limited due to the spoofed SYNs with random return ports coming

from the zombie, the spoofed SYNs with the target port on the victim as their return

port will quickly fill the SYN backlog if the target port is also closed and cause fewer

entries to be free for non-spoofed attacker SYNs, therefore causing the attacker to see

fewer SYN/ACKs in response. If the target port is open, the open port sends more

RSTs before rate limiting begins meaning that more SYN backlog entries remain free

and the attacker sees more SYN/ACKs. The results of this experiment are shown

in Table 3.4, where the results are based on the number of SYN/ACKs the attacker

receives. Some data points for both closed and open ports were thrown out due

to failures of the Python pcap library at high packet rates. Packet loss due to the

high rates could only make the distributions more similar, not less, because more

packets are sent over the TUN/TAP interface for the open port scenario. Thus,

the distributions for open and closed ports are clearly different. A two-sampled,

31



Chapter 3. Idle Scanning and Non-interference Analysis of Network Protocol Stacks

Port status Mean Std. dev. Min. Max

Open 262.1 41.8 120 447

Closed 218.0 39.3 68 318

Table 3.4: Results from SYN backlog idle scan implementation for port scanning
FreeBSD.

Port status Mean Std. dev. Min. Max

Open 482.4 3.3 474 489

Closed 427.8 3.4 417 435

Table 3.5: Results from SYN backlog idle scan implementation for port scanning
Linux.

unpooled t-test (which assumes neither known variances nor equal variances) for

these two sets of data gives a t score of 7.71 with 197 degrees of freedom, which

corresponds with a p-score of 0.999999999999696 meaning that a null hypothesis

that the two distributions have an equal mean is rejected with very high confidence.

For port scanning Linux-based victims, the idle scan first sends 96 filler SYNs

to fill all but one entry in the SYN backlog. SYN/ACK replies to filler SYNs are

not counted in the results. Then it alternates, at an overall rate of 100 packets per

second, spoofed SYNs with the return IP address of the victim and return port of

the target port, filler SYNs, and probe SYNs. Table 3.5 shows the results of these

experiments, where the results reflect the number of SYN/ACK responses to probe

SYNs.

Stealth and Efficiency

Our idle scan implementations in this section are intended to show that the abstract

counterexamples that resulted from our modeling effort were real divergences in real

network stacks that could be exploited by the attacker for idle scans. Since the diver-
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gences are based on rates in real network stacks we used hypothesis testing to show

this. We only report a t-score and p-score for one set of experiments (the SYN back-

log idle scan implementation for port scanning FreeBSD) because the distributions

of the results for other experiments were so different that their high t-scores led to

p-scores that were within floating point rounding error of 1.0. Our implementations

of these idle scans were designed for this hypothesis testing and therefore are not

optimized for attacker stealth or efficiency in carrying out the scan. For assessing

the practicality of these idle scan techniques, we will now comment on stealth and

efficiency.

For the RST rate limiting idle scan, the attacker cannot perform the idle scan

without sending more than 200 SYN/ACKs to the zombie either directly or indirectly.

However, the attacker need not send SYNs to the victim (spoofed from the zombie)

at half this rate. It is possible to, e.g., send SYNs to the victim at a rate of 20 per

second and send SYN/ACKs (or any packet that will elicit a RST) to the zombie at

195 per second. Theoretically, the mutual information between the victim port status

and the sequence of packets the attacker sees is non-zero even if the attacker sends

only a single spoofed SYN to the victim, and even when packet loss is accounted

for. Thus the attacker has a fair amount of flexibility in terms of trading off speed of

the scan vs. stealth for packets it sends to the victim. Furthermore, sending SYNs

simultaneously to multiple victims and multiple ports and measuring the zombie

responses in the aggregate can increase the efficiency of the scan if the distribution

of expected closed vs. open victim ports diverges from an equal distribution. To see

this, consider the extreme case where a large subnetwork has only a single host with

an open port, something similar to a binary search could greatly reduce the amount

of time necessary for the scan in this case.

For the SYN backlog idle scans, which are more powerful in terms of the new

capabilities they offer attackers beyond the currently known idle scan technique,
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there is a wider range of efficiency and stealth tradeoffs that the attacker can make.

Furthermore, unlike ICMP IPID- or RST rate limit-based idle scans, virtually any

modern network stack that offers any type of protection against SYN flooding can

be used as a zombie. We chose to use a low-memory Linux kernel 2.4-based zombie

for our experiments due to its simplicity and small SYN backlog size, but larger SYN

backlog sizes or more complex SYN backlog implementations are also easily exploited

for SYN backlog idle scans. The SYN backlog only needs to be almost full for SYN

backlog idle scans to work, and SYNs for half-open connections take 190 seconds

to timeout in Linux by default. So even for high-memory Linux 2.4 machines with

1024 SYN backlog entries (of which 769 are used, compared to 97 for 128-entry SYN

backlogs), the rate necessary to create the conditions for an idle scan only increases

from 0.5 SYNs per second from the attacker to the zombie to about 4.1 SYNs per

second (these rates keep the buffer almost full despite the timeouts). Once these

conditions are created, the attacker effectively can do a SYN/ACK scan of the victim

host or network at the cost of two packets sent per SYN/ACK query and three more

generated as responses. It also does not matter whether or not the zombie implements

SYN cookies, since SYN cookies are never retransmitted (compared to typically three

to five retransmissions of regular SYN/ACKs for various zombie configurations) and

also have easily identifiable statistical anomalies in their initial sequence numbers.

Some SYN backlog implementations that are not simple buffers like Linux 2.4 may

make SYN-backlog idle scans slightly more difficult, but still possible and relatively

efficient. For example, the FreeBSD SYN cache implementation [55] uses a SYN

backlog with 512 buckets that each have 30 entries and are chosen uniformly at

random using a hash of the IP address/port pairs and a host-generated secret. This

mechanism is designed to stop denial-of-service, not idle scans. It creates some

equivocations that can reduce the amount of information flow the attacker can exploit

for idle scans but the attacker can still perform the scan relatively efficiently even

with FreeBSD zombies. We did not explore the SYN backlog implementations of
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Linux kernel 2.6 or Windows hosts as part of this work. All modern network stacks

must have some form of SYN backlog for reliability purposes and a limit on this

resource to prevent denial-of-service. Thus, only by making this resource non-shared

is non-interference to prevent idle scans possible, and the current OSI network stack

model with TCP/IP does not make the necessary trust distinctions to split the SYN

backlog. Thus, virtually every end host machine that the attacker can route to at

least one open port on is a potential zombie.

The rate at which the attacker must send packets to the zombie for a SYN backlog

idle scan, and therefore the stealth of the scan, depends on the attacker’s goals. If

the zombie is a Linux kernel 2.4 machine and the attacker wants only to check the

liveness of a range of IP addresses on the victim network, then between 0.5 and 4.1

packets per second plus the probes themselves is sufficient. Note that, in terms of

stealth, it is also relevant that the attacker need not send any packets to the victim

for this form of idle scan, not even packets with spoofed return addresses.

For detecting the operating system of a victim host or scanning individual ports

on the victim, higher rates are necessary. Detecting a Linux machine on the victim

network and port scanning it can easily be done at between 10 and 20 packets per

second. We also discovered during our experiments that, at least for Linux kernel

2.4 hosts, it is easy for the attacker to not only remove their own packets from the

SYN backlog manually, but any packet that they have spoofed, using spoofed RSTs.

This is because only the IP address and port pairs are checked, the sequence and

acknowledgment numbers for RSTs are ignored when deciding whether to drop an

entry from the SYN backlog on the zombie. Thus, the attacker has a high degree

of control over the SYN backlog status of the victim. Packet delay, packet loss, and

interference from other machines that contact the zombie can easily be accounted for

in this way, and the aggregate effect of scanning multiple victims at a time mentioned

above also applies to SYN backlog idle scans. One possible avenue for future work
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would be to model the capabilities of this attack as a Markov Decision Process and

discern tight bounds on numbers of packets and rates needed for different attacker

goals.

In terms of the practicality of our attacks, the ability to scan firewalled ports and

discover machines on protected networks that the attacker cannot route packets to

certainly underscores the need for good ingress filtering and DMZ management. Our

attacks are applicable in all three of the following scenarios: when the victim and

zombie are on the same subnet and communicate using ARP1, when the victim and

zombie are within the same network domain but on different subnets, and when the

victim and zombie are geographically separated by some distance on the Internet.

The attacker can be inside or outside the network domain of the zombie and victim.

Thus, many possibilities for network inference arise. For example, the attacker can

infer when a host opens ports only to other particular machines, such as a backup

server or network administrator. While many network configurations prevent IP

address spoofing, which is essential for both attacks described in this chapter, idle

scans are a very general technique that can apply in a variety of scenarios.

3.4.3 Ensuring Non-interference Using SAL Model Checker

Based on our experimental results from implementing the two counterexamples as

idle scan attacks, it is apparent that RST rate limiting and the SYN backlog interact

in complex ways and cannot be considered separately. Thus we chose to leave RST

rate limiting in the model for verifying non-interference of the split SYN backlog.

It is well-known that verifying properties using a model checker is much more

difficult than finding a counterexample. We abstracted the model down to the sim-

plest form that produces both counterexamples, and attempted to prove the non-

interference property for cases where the shared, limited resources were split based on
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trust relationships and therefore no longer shared. The zombie and victim consider

each other trusted and the attacker untrusted. For the RST rate limiting counterex-

ample, the hosts have separate RST count RST counters for trusted vs. untrusted

hosts, and the SYN backlog is removed. For the SYN backlog counterexample, we

implemented a split SYN backlog structure with separate SYN backlog buffers for

trusted vs. untrusted hosts.

In the first case, we removed the SYN backlog and focused only on the RST rate

limitation counter example. Since symbolic model checkers are known to be better for

verifying properties in contrast to explicit state enumeration based bounded-model

checkers, we used SAL’s symbolic model checker. It verified the property that:

� G(PacketA1 = PacketA2)

This verification completed in a little over 5 minutes.

Encouraged by this result, we introduced the SYN backlog back into the model.

The symbolic model checker ran out of memory on a machine with 16GB of memory

after three days. We then ran the bounded model checker up to depth 1000 (to mean

that all sequences of transitions of length ≤ 1000 are checked for counterexamples),

and the model checker did not report any counterexample, which is very encouraging.

This means that the attacker cannot violate non-interference with any idle scan where

less than 1000 transitions occur. The SYN backlog counterexample to our shared

SYN backlog implementation required only 5 transitions. Informally, this result

means that there exists no attack, even with only a single entry in the SYN backlog,

where the attacker can violate non-interference with 1000 or fewer packets being

generated by the attacker or by the zombie and victim’s responses. One avenue of

possible future work would be to explore alternatives to symbolic model checking

for the split SYN backlog, including verifying the property through k-induction [26].
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Attempting a proof by induction on an induction-based theorem prover such as ACL2

or RRL may also prove fruitful.

3.5 Concluding Remarks and Future Work

We modeled idle scans for modern network stacks using transition systems and an-

alyzed them using model checking. This modeling effort led to the discovery of two

new forms of idle scan, each of which was associated with a shared, limited resource.

Our results demonstrate that non-interference for network protocol stacks warrants

further study. We discovered two new forms of idle scan, one of which gives the

attacker capabilities that no current attacker port scanning capabilities below layer

7 (the application layer) provide. We demonstrated in this chapter that it is possible

for an attacker to port scan a network from outside the firewall on a port that the

firewall blocks, for example. We also showed that this form of idle scan, based on

SYN backlogs, can be used for a rudimentary form of operating system detection.

In light of these results, a more formal treatment of information flow in networks

is needed so that we can better understand advanced idle scans, both for existing

networks and in future protocol designs.

We discussed the stealth and efficiency of the idle scans in Section 3.4.2. While

it is clear both that the attacks are practical and that certain defenses exist in some

situations, a more thorough treatment of possible scans and defenses to detect or

eliminate them is needed.

Using SAL’s model checkers, we were able to identify counterexamples to non-

interference, in the form of idle scans, from our formal model of a network stack as a

transition system. After fixing the model by splitting limited resources and separat-

ing them for trusted vs. untrusted hosts we are able to verify the non-interference

property for the RST rate limit case. However, we were only able to show the non-
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interference property with both RST rate limiting and a SYN backlog up to 1000

transitions. Verifying the non-interference property for this more general fix using

a model checker remains a challenge. While non-interference and model checking

proved useful for studying specific shared resources, we were not able to build a

model complex enough to discover unexpected counterexamples.

Our model of network stacks was at the level of abstraction of sequences of pack-

ets. A richer model that includes memory usage, packet loss, and packet delay would

likely produce more counterexamples to the non-interference property for idle scans.

Thus we propose that trust relationships be made explicit all the way down to the

IP layer in future protocol designs. Because all resources are inherently limited, giv-

ing protocol implementations a mechanism that can help divide these resources and

remove sharedness is the only way to address the advanced network reconnaissance

attacks of the future. Our results in Section 3.4.3 demonstrated that non-interference,

which effectively eliminates idle scans, is achievable by statically dividing resources

based on trust relationships.
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Network_Protocol_Stack : CONTEXT =

BEGIN

% Type Declarations

Protocol : TYPE = {tcp, icmp, udp, invalidProtocol};

IP: TYPE = [1..5]; % 1 is Attacker, 2 is Victim, 3 is Zombie

PortStatus: TYPE = {open, closed, filtered};

TCP_Flag : TYPE = {syn, fin, synack, rst, drop};

Port: TYPE = [1..3]; % each host has 3 ports

Type_ICMP: TYPE = [1..5];

Packet: TYPE = [# sip_IP : IP, dip_IP : IP, ihl_IP : ValidOrInvalid, ...

Host : TYPE = [# ip : IP , portstatus : array Port of PortStatus, ...

...

% Functions

ProperReply(Packet, PortStatus, Rst_counter): Packet, Rst_counter;

% This function returns the proper response to a given packet

% and a reduced Rst_counter if a RST is sent.

...

UpdateSynbacklog (Packet, Synbacklog): Synbacklog, SynPIsthereOrNot;

% This function returns the new state of the SYN backlog, which can change

% for SYNs or RSTs, and a value indicating if the SYN already exists, was

% dropped, or was placed in the SYN backlog

...

main : MODULE =

BEGIN

% Variable Declarations

GLOBAL v1 : Host % victim 1

GLOBAL v2 : Host % victim 2

GLOBAL z1 : Host % zombie 1

GLOBAL z2 : Host % zombie 2

...

LOCAL PacketA1 : Packet % Packets sent to attacker in scenario 1

LOCAL PacketA2 : Packet % Packets sent to attacker in scenario 2

...

% Initialization Section

...

% Transition Section

TRANSITION

[

(v1.fullness /= QueueSize OR z1.fullness /= QueueSize )-->

% Attacker creates a packet and puts it in queues of either

% v1 and v2 or z1 and z2

...

[]

(v1.fullness /= 0 AND v2.fullness /= 0 ) -->

% v1 and v2 pop a packet and call ProperReply and UpdateSynbacklog to

% choose a proper reply and update their internal state.

...

[]

(z1.fullness /= 0 AND z2.fullness /= 0 ) -->

% z1 and z2 reply and update their state

...

]

END;

theorem1: THEOREM main |- G( PacketA1 = PacketA2 );

END

Figure 3.1: Outline of SAL code for the network protocol stack model.
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...

[]

(z1.fullness /= 0 AND z2.fullness /= 0 ) -->

% z1 and z2 reply and update their state

...

collector_1’.packet = z1.queueOfHost[1] ;

(FORALL (j: FullnessOfQueue ): z1’.queueOfHost[j-1] = z1.queueOfHost[j]);

z1’.fullness = z1.fullness - 1;

...

temp’= UpdateSynbacklog(...);

z1’.synbacklog= temp’.host.synbacklog;

...

response’ = ProperReply(collector_1’, z1.portsstatus[collector_1’.packet.dport],

temp’ ) ;

...

% Do the same for z2, which may have a different packet in its queue

collector_2’.packet = z2.queueOfHost[1] ;

(FORALL (j: FullnessOfQueue ): z2’.queueOfHost[j-1] = z2.queueOfHost[j]);

z2’.fullness = z2.fullness - 1;

...

Figure 3.2: Overview of what happens when a transition fires.
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...

% Functions

ProperReply(Packet, PortStatus, Rst_counter): Packet, Rst_counter;

% This function returns the proper response to a given packet

% and a reduced Rst_counter if a RST is sent.

IF ...

...

ELSIF ( Packet.protocol_IP = tcp AND (Packet.seqNum_TCP = known AND Packet.ack_TCP = known )

AND Packet.flag_TCP = syn AND ps = open AND Packet.synPIsThere2 = put )

THEN

packetOut with .packet.sip_IP := Packet.dip_IP

with .packet.sport := Packet.dport

with .packet.dip_IP := Packet.sip_IP

with .packet.dport := Packet.sport

with .packet.flag_TCP := synack

with ...

...

UpdateSynbacklog (Packet, Synbacklog): Synbacklog, SynPIsthereOrNot;

% This function returns the new state of the SYN backlog, which can change

% for SYNs or RSTs, and a value indicating if the SYN already exists, was

% dropped, or was placed in the SYN backlog

IF ( ... AND Packet.flag_TCP = syn AND Host.synQeueEntries[1]=valid

... AND Packet.sip_IP = host.synbacklog[1].sip_IP ...)

THEN # Ignore duplicate SYNs, i.e., that already exist in the SYN backlog

synCollOut with .synPIsThere := exist

ELSIF ( ... )

THEN synCollOut

with .synPIsThere := put

with .host.synbacklog[1] := synCollIn.packet

...

Figure 3.3: Structure of the UpdateSynbacklog and ProperReply functions.
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Chapter 4

Detecting Censorship via TCP/IP

Side Channels

Tools for discovering intentional packet drops are important for a variety of applica-

tions, such as discovering the blocking of Tor by ISPs or nation states [13]. However,

existing tools have a severe limitation: they can only measure when packets are

dropped in between the measurement machine and an arbitrary remote host. The

research question we address in this chapter is: can we detect packet drops between

two hosts without controlling either of them and without sharing the path between

them?

In this chapter, we describe a method for remotely detecting intentional packet

drops on the Internet using idle scans. That is, given two arbitrary IP addresses

on the Internet that meet some simple requirements, our proposed idle scan can

discover packet drops (e.g., due to censorship) between the two remote machines,

as well as infer in which direction the packet drops are occurring. The only major

requirements for our approach are a client with a global IP Identifier (IPID) and a

target server with an open port. We require no special access to the client or server.
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Our method is robust to noise because we apply intervention analysis based on an

autoregressive-moving-average (ARMA) model. Also, our method uses a low packet

rate that does not fill shared resource and therefore it is non-intrusive.

4.1 Introduction

As shown in Section 2.2, Antirez [12] proposed the first type of idle scan, which we

call an IPID idle port scan. In this type of idle scan an “attacker” (which we will

refer to as the measurement machine in our work) aims to determine if a specific

port is open or closed on a “victim” machine (which we will refer to as the server)

without using the attacker’s own return IP address. The attacker finds a “zombie”

(client in this chapter) that has a global IP identifier (IPID) and is completely idle.

In this chapter, we say that a machine has a global IPID when it sends TCP RST

packets with a globally incrementing IPID that is shared by all destination hosts.

This is in contrast to machines that use randomized IPIDs or IPIDs that increment

per-host. More details are in Section 2.2. Nmap [58] has built-in support for antirez’s

idle scan, but often fails for Internet hosts because of noise in the IPID that is due to

the zombie sending packets to other hosts. Our method described in this chapter is

resistant to noise, and can discover packet drops in either direction (and determine

which direction). Nmap cannot detect the case of packets being dropped from client

to server based on destination IP address, which our results demonstrate is a very

important case.

Two other types of idle scans were presented in Chapter 3, including one that

exploits the state of the SYN backlog as a side channel. Our method is based on a

new idle scan technique that can be viewed as a hybrid of the IPID idle scan and the

SYN backlog idle scan from Chapter 3. Whereas the SYN backlog idle scan required

filling the SYN backlog and therefore causing denial-of-service, our technique uses
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a low packet rate that does not fill the SYN backlog and is non-intrusive. The

basic insight that makes this possible is that information about the server’s SYN

backlog state is entangled with information about the client’s IPID field. Thus, we

can perform both types of idle scans (IPID and SYN backlog), to detect drops in

both directions, and our technique overcomes the limitations of both by exploiting

the entanglement of information in the IPID and treating it as a linear intervention

problem to handle noise characteristic of the real Internet.

Effectively, by using idle scans our method can turn approximately 1% of the

total IP address space into measurement machines that can be used as vantage

points to measure IP-address-based censorship, without actually gaining access to

those machines. We can achieve this because of information flow in their network

stacks.

In this chapter, we offer several major contributions:

• A non-intrusive method for detecting intentional packet drops between two IP

addresses on the Internet where neither is a measurement machine.

• An Internet measurement study that shows the efficacy of the method.

• A model of IPID noise based on an autoregressive-moving-average (ARMA)

model that is robust to autocorrelated noise.

Source code and data are available upon request, and a web demonstration ver-

sion of the hybrid idle scan is at http://spookyscan.cs.unm.edu. The types of

measurements we describe in this chapter raise ethical concerns because the mea-

surements can cause the appearance of connection attempts between arbitrary clients

and servers. In China there is no evidence of the owners of Internet hosts being per-

secuted for attempts to connect to the Tor network, thus our measurements in this

chapter are safe. However, we caution against performing similar measurements in
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other countries or contexts without first evaluating the risks and ethical issues. More

discussion of ethical issues is in Chapter 7.

The rest of the chapter is structured as follows: After describing the implementa-

tion of our method in Section 4.2, we present our experimental methodology for the

measurement study in Section 4.3. This is followed by Section 4.4, which describes

how we analyze the time series data generated by a scan using an ARMA model.

Results from the measurement study are in Section 4.5, followed by discussions and

conclusions in Section 4.6. Related work is discussed in Chapter 6.

4.2 Implementation of Hybrid Idle Scan

In order to determine the direction in which packets are being blocked, our method is

based on information flow through both the IPID of the client and the SYN backlog

state of the server, as shown in Figure 4.1. Our implementation queries the IPID

of the client (by sending SYN/ACKs from the measurement machine and receiving

RST responses) to create a time series to compare a base case to a period of time

when the server is sending SYN/ACKs to the client (because of our spoofed SYNs).

We assume that the client has global IPIDs and the server has an open port.

Global IPIDs were explained in Section 4.1. The SYN backlog is a buffer that

stores information about half-open connections where a SYN has been received and

a SYN/ACK sent but no ACK reply to the SYN/ACK has been received. Half-

open connections remain in the SYN backlog until the connection is completed with

an ACK, aborted by a RST or ICMP error, or the half-open connection times out

(typically between 30 and 180 seconds). The SYN/ACK is retransmitted some fixed

number of times that varies by operating system and version, typically three to six

SYN/ACKs in total. This SYN backlog behavior on the server, when combined with

the global IPID behavior of the client, enables us to distinguish three different cases
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Figure 4.1: Three different cases that our method can detect. MM is the measure-
ment machine.

(plus an error case):

• Server-to-client-dropped: In this case SYN/ACKs are dropped in transit

from the server to the client based on the return IP address (and possibly other

fields like source port), and the client’s IPID will not increase at all (except for

noise). See Figure 4.2.

• No-packets-dropped: In the case that no intentional dropping of packets is

occurring, the client’s IPID will go up by exactly one. See Figure 4.3. This

happens because the first SYN/ACK from the server is responded to with a

RST from the client, causing the server to remove the entry from its SYN

backlog and not retransmit the SYN/ACK. Censorship that is stateful or not

based solely on IP addresses and TCP port numbers may be detected as this

case, including filtering aimed at SYN packets only. Also, if the packet is

not dropped, but instead the censorship is based on injecting RSTs or ICMP

errors, it will be detected as this case. Techniques for distinguishing these other
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Figure 4.2: Example IPID difference time series’ for three separate experiments that
lead to detection of the Server-to-client-dropped case. Note the high amount
of noise in the third experiment. Our ARMA modeling is able to detect this case
correctly even in the presence of such high noise.

possibilities are left for future work.

• Client-to-server-dropped: In this case RST responses from the client to the

server are dropped in transit because of their destination IP address (which

is the server). When this happens the server will continue to retransmit

SYN/ACKs and the client’s IPID will go up by the total number of transmitted

SYN/ACKs including retransmissions (typically three to six). See Figure 4.4.

This may indicate the simplest method for blacklisting an IP address: null

routing.

• Error: In this case networking errors occur during the experiment, the IPID

is found to not be global throughout the experiment, a model is fit to the data

but does not match any of the three non-error cases above, the data is too
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Figure 4.3: Example IPID difference time series’ for three separate experiments that
lead to detection of the No-packets-dropped case. Note the high amount of noise
in the second experiment. Our ARMA modeling is able to detect this case correctly
even in the presence of such high noise.

noisy and intervention analysis (see Section 4.4) fails because we are not able

to fit a model to the data, and/or other errors.

Noise due to packet loss and delay or the client’s communications with other

machines may be autocorrelated. The autocorrelation comes from the fact that the

sources of noise, which include traffic from a client that is not idle, packet loss,

packet reordering, and packet delay, are not memoryless processes and often happen

in spurts. The accepted method for performing linear intervention analysis on time

series data with autocorrelated noise is ARMA modeling [18], which we describe in

Section 4.4.
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Figure 4.4: Example IPID difference time series’ for three separate experiments that
lead to detection of the Client-to-server-dropped case.

4.3 Experimental Setup

All measurement machines were Linux machines connected to a research network

with no packet filtering. Specifically, this network has no stateful firewall or egress

filtering for return IP addresses.

One measurement machine was dedicated to developing a pool of both client and

server IP addresses that have the right properties for use in measurements. Clients

were chosen by horizontally scanning China and other countries for machines with

global IPIDs, then continually checking them for a 24-hour period to cull out IP

addresses that frequently changed global IPID behavior (e.g., because of DHCP),

went down, or were too noisy. A machine is considered to have a global IPID if its

IPID as we measure it by sending SYN/ACKs from alternating source IP addresses

and receiving RSTs never incrementing outside the ranges [−40, 0) or (0, 1000] per
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second when probed from two different IP addresses. This range allows for non-idle

clients, packet loss, and packet reordering. It is possible to build the time series in

different ways where negative IPID differences are never observed, but in this study

our time series was the differences in the client’s IPIDs in the order in which they

arrived at the measurement machine. Our range of [−40, 0) or (0, 1000] is based on

our observations of noise typical of the real Internet. The IPID going up by 0 is a

degenerate case and means the IPID is not global.

Servers were chosen from three groups: Tor directory authorities, Tor bridges, and

web servers. The ten Tor directory authorities were obtained from the Tor source

code and the same ten IPs were tested for every day of data. Three Tor bridges were

collected daily both through email and the web. Every day seven web servers were

chosen randomly from the top 1000 websites on the Alexa Top 1,000,000 list [7]. All

web server IPs were checked to make sure that they stood up for at least 24 hours

before being selected for measurement. Furthermore, we checked that the client and

server were both up and behaving as assumed between every experiment (i.e., every

five minutes).

A round of experiments was a 24-hour process in which measurements were car-

ried out on the two measurement machines. Each 24-hour period had 22 hours of

experiments and 2 hours of down time for data synchronization. For each measure-

ment period on each of the two machines performing direct measurements, ten server

machines and ten client machines from the above process were chosen for geographic

diversity: 5 from China, 2 from countries in Asia that were not China, 1 from Eu-

rope, and 2 from North America. IP addresses were never reused except for the Tor

directory authorities, so that every 24-hour period was testing a set of 20 new clients,

10 new servers, and the 10 directory authorities.

For each of the twenty clients and twenty servers geographical information pro-

vided by MaxMind was saved. MaxMind claims an accuracy of 99.8% for identifying
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the country an IP address is in [64]. For each of the twenty server machines, a series

of SYN packets was used to test and save its SYN/ACK retransmission behavior for

the analysis in Section 4.4.

Every hour, each of our two main measurement machines created ten threads.

Each thread corresponded to one client machine. Each thread tested each of the

ten server IP addresses sequentially using our idle scan based on the client’s IPID.

No spoofed SYNs were sent to the server during the first 100 seconds of a test,

and spoofed SYNs with the return IP address of the client were sent to the server

at a rate of 5 per second for the second 100-second period. Then spoofed RST

packets were sent to the server to clear the SYN backlog and prevent interference

between sequential experiments. A timeout period of sixty seconds was observed

before the next test in the sequence was started, to allow all other state to be

cleared. Each experiment lasted for less than five minutes, so that ten could be

completed in an hour. Every client and server was involved in only one experiment

at a time. Each client/server pair was tested once per hour throughout the 24-hour

period, for replication and also to minimize the effects of diurnal patterns. Source

and destination ports for all packets were carefully chosen and matched to minimize

assumptions about what destination ports the client responds on. Specifically, source

ports for SYN packets sent to the server (both spoofed SYNs and SYNs with the

measurement machine’s IP address as the return IP address for testing) were chosen

from the same range as the destination ports for SYN/ACKs sent to the client

(always strictly less than 1024). We did not find it necessary to hold the source port

for SYN/ACKs sent to the client to be always equal to the open port on the server,

but this is possible.
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4.4 Analysis

In this section, we set out our statistical model for our time series data. We then

describe our process for outlier removal and for statistically testing if and in which

direction packet drops are occurring.

We model each time series y1, . . . , yn as a linear regression with ARMA errors,

a combination of an autoregressive-moving-average (ARMA) model with external

linear regressors. ARMA models are used to analyze time series with autocorrelated

data and are themselves a combination of two models, an autoregressive (AR) model

and a moving-average (MA) model.

An AR model of order p specifies that every element of a time series can be

written as a constant plus the linear combination of the previous p elements:

yt = c+ zt + φ1yt−1 + · · ·+ φt−pyt−p

where zt is a white noise series. An MA model of order q specifies that every element

of a time series can be written as a constant plus the linear combination of the

previous q white-noise terms:

yt = c+ zt + θ1zt−1 + · · ·+ θt−qzt−q

Intuitively, each element is linearly related to the previous random “shocks” in the

series. An ARMA(p, q) model combines an AR model of order p and an MA model

of order q:

yt = c+ zt +

p�

i=1

φiyt−i +

q�

i=1

θizt−i

We use a linear regression with ARMA errors to model our time series data. This

specifies that every element in a time series can be written as a constant plus the
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t1 t2 t3

 x1

 x2

 x3

 C→S

 None
 S→C

Figure 4.5: For a server that retransmits r − 1 SYN/ACK’s, each case can be ex-
pressed as the linear combination of regressors x1, . . . , xr; shown is when r = 3 with
SYN/ACK transmissions responding to the first spoofed SYN occurring at t1, t2,
and t3. C→S indicates client-to-server, and S→C indicates server-to-client.

linear combination of regressors x1, . . . , xr with an ARMA-modeled error term:

yt = c+
r�

i=1

βixit + et,

et = zt +

p�

i=1

φiet−i +

q�

i=1

θizt−i

We use the regressors xi for intervention analysis, i.e., for analyzing our experi-

mental effect on the time series at a specific time.

For each experiment, we pick regressors according to which times the server

(re)transmits SYN/ACK’s in response to SYN’s. For a server that (re)transmits

r SYN/ACK’s in response to each SYN, we have r regressors. We call time t1 the

time of the first transmission in response to the first of our spoofed SYN’s, and we

call ti+1 the time the server would send the ith retransmission in response to that
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SYN. Then we define regressor xi as the indicator variable

xij =





1 if ti ≤ j and either j < ti+1 or i = r

0 otherwise

In other words, x1 is zeros until the time the server transmits the first SYN/ACK

then ones until the server begins retransmitting SYN/ACK’s. The remaining xi are

zeros until the time the server would begin retransmitting its ith SYN/ACK then

ones until if/when the (i+1)th SYN/ACK’s would begin being retransmitted. This

definition allows us to model any of the possible level shifts in any case of packet

drop as a linear combination of all xi. See Figure 4.5 for an illustration.

We choose ARMA orders p and q by performing model selection over time series

elements y1, . . . , yt1 . We find the p ≤ 7 and q ≤ 7 for the ARMA(p, q) model

that maximizes the corrected Akaike information criterion, a metric which rewards

models that lose less information but penalizes models overfitted with too many

parameters [44]. It is given by

AICC = −2 lnL+ 2k +
2k(k + 1)

n− k − 1
,

where here the number of parameters k is p + q + 2 and where L is the estimated

maximum likelihood over all φi and θi.

After p and q are chosen, we then simultaneously fit all φi, θi, and βi of our linear

regression model with ARMA errors over the entire time series y1, . . . , yn correspond-

ing to the estimated maximum likelihood.

After fitting parameters, we remove outliers that might be caused by, e.g., spikes

in network traffic that may hamper our analysis. We use the λ̂2,T test statistic

proposed by Chang et. al [20] with significance α = 0.05. After removing outliers, we

iteratively refit the φi, θi, and βi parameters and test for outliers until no additional

outliers are removed.
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For intervention analysis, we use hypothesis testing over the value of βr to de-

termine if packets are dropped and in which direction. If we send s spoofed SYN’s,

without noise, we would expect βr to equal one of the following: 0 for the case where

packets are dropped from the server to client, s for the case where no packets are

dropped, or rs for the case where packets are dropped from the client to server. One

might pick two thresholds, k1 = s/2 in between the first two cases and threshold

k2 = (1 + r)s/2 between the last two cases; however, for the second threshold, we

instead choose k�
2 = min(2s, k2) to be more robust to, e.g., packet loss. Then we de-

termine the case by a series of one-sided hypothesis tests performed with significance

α = 0.01 according to the following breakdown:

• Server-to-client-dropped if we reject the null hypothesis that βr ≥ k1.

• No-packets-dropped if we reject the null hypotheses that βr ≤ k1 and that

βr ≥ k�
2.

• Client-to-server-dropped if we reject the null hypothesis that βr ≤ k�
2.

• Error if none of the above cases can be determined.

4.5 Results

Table 4.1 shows results from 5 days of data collection, where S → C is Server-

to-client-dropped, None is No-packets-dropped, C → S is Client-to-server-

dropped, and Error is Error. CN is China, Asia-CN is other Asian countries, EU

is Europe, and NA is North America. For server types, Tor-dir is a Tor directory

authority, Tor-bri is a Tor bridge, and Web is a web server.

Our expectation would be to observe Server-to-client-dropped for clients in

China and Tor servers because of Winter and Lindskog’s observation that SYN/ACKs
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Client,Server S → C (%) None (%) C → S (%) Error (%)

CN,Tor-dir 2200 (73.04) 19 (0.63) 504 (16.73) 289 (9.59)
Asia-CN,Tor-dir 0 (0.00) 1171 (96.38) 1 (0.08) 43 (3.54)

NA,Tor-dir 1 (0.07) 1217 (90.69) 49 (3.65) 75 (5.59)
EU,Tor-dir 2 (0.28) 695 (97.89) 2 (0.28) 11 (1.55)
CN,Tor-bri 1012 (58.91) 565 (32.89) 31 (1.80) 110 (6.40)

Asia-CN,Tor-bri 0 (0.00) 626 (80.88) 9 (1.16) 139 (17.96)
NA,Tor-bri 0 (0.00) 657 (78.21) 30 (3.57) 153 (18.21)
EU,Tor-bri 0 (0.00) 313 (78.25) 9 (2.25) 78 (19.50)
CN,Web 28 (2.15) 995 (76.30) 36 (2.76) 245 (18.79)

Asia-CN,Web 1 (0.17) 569 (97.43) 1 (0.17) 13 (2.23)
NA,Web 0 (0.00) 606 (93.37) 0 (0.00) 43 (6.63)
EU,Web 0 (0.00) 305 (90.24) 0 (0.00) 33 (9.76)

All Web 29 (1.01) 2475 (86.09) 37 (1.29) 334 (11.62)
All Tor-bri 1012 (27.12) 2161 (57.90) 79 (2.12) 480 (12.86)
All Tor-dir 2203 (35.09) 3102 (49.40) 556 (8.85) 418 (6.66)

Table 4.1: Results from the measurement study.

are statelessly dropped by the “Great Firewall of China” (GFW) based on source IP

address and port [107]. We would expect to see No-packets-dropped for most web

servers from clients in China, unless they host popular websites that happen to be

censored in China. Similarly, in the expected case we should observe No-packets-

dropped for clients outside of China, regardless of server type. We expect a few

exceptions, because censorship happens outside of China and because the GFW is

not always 100% effective. In particular, Tor bridges are not blocked until the GFW

operators learn about them, and some routes might not have filtering in place. Our

results are congruent with all of these expectations.

In 5.9% of the client/server pairs we tested, multiple cases were observed in the

same day. In some cases it appears that noise caused the wrong case to be detected,

but other cases may be attributable to routes changing throughout the day [75].

That the data is largely congruent with our expectations demonstrates the efficacy

of the approach, and some of the data points that lie outside our expectations have
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patterns that suggest that a real effect is being measured, rather than an error. For

example, of the 28 data points where web servers were blocked from the server to

the client in China, 20 of those data points are the same client/server pair.

38% of the data we collected does not appear in Table 4.1 because it did not pass

liveness tests. Every 5-minute data point has three associated liveness tests. If a

server sends fewer than 2.5 SYN/ACKs in response to SYNs from the measurement

machine, a client responds to less than 3
5

of our SYN/ACKs, or a measurement

machine sending thread becomes unresponsive, that 5-minute data point is discarded.

Two out of ten Tor directory authorities never retransmitted enough SYN/ACKs

to be included in our data. Of the remaining eight, two more account for 98.8% of

the data points showing blocking from client to server. These same two directory

authorities also account for 72.7% of the Error cases for directory authorities tested

from clients in China, and the case of packets being dropped from server to client

(the expected case for China and the case of the majority of our results) was never

observed for these two directory authorities.

When Winter and Lindskog [107] measured Tor reachability from a virtual private

server in China, there were eight directory authorities at that time. One of the eight

was completely accessible, and the other seven were completely blocked in the IP

layer by destination IP (i.e., Client-to-server). In our results, six out of ten are

at least blocked Server-to-client and two out of ten are only blocked Client-to-

server (two had all results discarded). Winter and Lindskog also observed that Tor

relays were accessible 1.6% of the time, and we observed that directory authorities

were accessible 0.63% of the time. Our results have geographic diversity and their

results can serve as a ground truth because they tested from within China. In both

studies the same special treatment of directory authorities compared to relays or

bridges was observed, as well as a small percentage of cases where filtering that

should have occurred did not.
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To evaluate the assumption that clients with a global IPID are easy to find in a

range of IP addresses that we desire to measure from, take China as an example. On

average, 10% of the IP addresses in China responded to our probes so that we could

observe their IPID, and of those 13% were global. So, roughly 1% of the IP address

space of China can be used as clients for measurements with our method, enabling

experiments with excellent geographic and topological diversity.

4.6 Conclusion

We have presented a method for detecting intentional packet drops (e.g., due to

censorship) between two almost arbitrary hosts on the Internet, assuming the client

has a globally incrementing IPID and the server has an open port. Our method can

determine which direction packets are being dropped in, and is resistant to noise due

to our use of an ARMA model for intervention analysis.

In a measurement study using our method featuring clients from multiple conti-

nents, we observed that, of all measured client connections to Tor directory servers

that were censored, 98% of those were from China, and only 0.63% of measured

client connections from China to Tor directory servers were not censored. This is

congruent with current understandings about global Internet censorship, leading us

to conclude that our method is effective.
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Chapter 5

Large-scale Spatiotemporal

Characterization of Inconsistencies

in GFW

A nation-scale firewall, colloquially referred to as the “Great Firewall of China,”

implements many different types of censorship and content filtering to control China’s

Internet traffic. Past work has shown that the firewall occasionally fails. In other

words, sometimes clients in China are able to reach blacklisted servers outside of

China. This phenomenon has not yet been characterized because it is infeasible to

find a large and geographically diverse set of clients in China from which to test

connectivity.

In this chapter, we overcome this challenge by using hybrid idle scan techniques

that are able to measure connectivity between a remote client and an arbitrary server,

neither of which are under the control of the researcher performing measurements.1

In addition to hybrid idle scans, we present and employ a novel side channel in

1For more details on the hybrid idle scan, refer to Chapter 4.
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the Linux kernel’s SYN backlog. We demonstrate both techniques by measuring

the reachability of the Tor network which is known to be blocked in China. Our

measurements reveal that 1) failures in the firewall occur throughout the entire

country without any conspicuous geographical patterns, 2) a network block in China

appears to have unfiltered access to parts of the Tor network, and 3) the filtering

seems to be mostly centralized at the level of Internet exchange points. Our work

also answers many other open questions about the Great Firewall’s architecture and

implementation.

5.1 Introduction

More than 600 million Internet users are located behind the world’s most sophis-

ticated and pervasive censorship system: the Great Firewall of China (GFW) [76].

Brought to life in 2003, the GFW has a tight grip on several layers of the TCP/IP

model and is known to block or filter IP addresses [107], TCP ports [107], DNS re-

quests [57, 90, 109], HTTP requests [23, 74, 24], circumvention tools, and even social

networking sites [113].

This pervasive censorship gives rise to numerous circumvention tools seeking to

evade the GFW by exploiting a number of opportunities [82]. Of particular interest

is the Tor anonymity network [28] whose arms race with the operators of the GFW

now counts several iterations. Once having had 30,000 users solely from China, the

Tor network now is largely inaccessible from within China’s borders as illustrated in

Figure 5.1.

The amount of users trying to connect to the Tor network indicates that there

is a strong need for practical and scalable circumvention tools. Censorship circum-

vention, however, builds on censorship analysis. A solid understanding of censorship

systems is necessary in order to design sound and sustainable circumvention systems.
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Figure 5.1: The approximate amount of directly connecting Tor users (as opposed
to connecting over bridges) for the first months of 2014. While the number of users
varies, it rarely exceeds 3,000.

However, it is difficult to analyze Internet censorship without controlling either the

censored source machine or its—typically uncensored—communication destination.

This problem is usually tackled by obtaining access to censored source machines,

finding open proxies, renting virtual systems, or by cooperating with volunteers in-

side the censoring country. In the absence of these possibilities, censorship analysis

has to resort to observing traffic on the server’s side and inferring what the client is

seeing.

Our work fills this gap by presenting and evaluating network measurement tech-

niques which can be used to expose censorship while controlling neither the source

nor the destination machine. This puts our study in stark contrast to previous work

which had to rely on proxies or volunteers, both of which provide limited coverage

of the censor’s networks. By being mostly independent of source and destination

machines, we are able to shed light on entirely unexplored areas of the Internet. We

evaluate our techniques by applying them to the Tor anonymity network, thereby
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handing the Tor Project practical tools to measure the reachability of their network.

Such tools are needed because bridges2 are frequently blocked in China without the

bridge operators or the Tor Project noticing [56]. Our work makes it possible to

test the reachability of these bridges without having a vantage point in China. As

a result, the Tor Project is able to learn which subset of bridges is still reachable

and hence undiscovered by the GFW. This knowledge facilitates the optimization of

bridge distribution [101], e.g., bridges blocked in China are only given out to users

outside China.

Our techniques are currently limited to testing basic IP connectivity. Thus, we

can only detect censorship on lower layers of the network stack, i.e., before a TCP

connection is even established. This kind of low-level censorship is very important to

the censors, however. For example, while social media controls on domestic sites in

China, such as Weibo, can be very sophisticated, users would simply use alternatives

such as Facebook if the low-level IP address blocking were not in place to prevent

this. Also, deep packet inspection (DPI) does not scale as well in terms of raw traffic

as does lower-level filtering. Nevertheless, we acknowledge that our techniques are

not applicable if censors only make use of DPI to block Tor as it was or is done by

Ethiopia, Kazakhstan, and Syria [1].

We are interested not only in finding patterns in the GFW’s failures, but also

in gaining a better understanding of how the GFW is architected within China’s

backbone and provincial networks and whether previously observed details of its im-

plementation are observed throughout the country. To this end, we focus our efforts

on testing the following hypotheses that will illuminate the GFW’s architecture and

implementation. All hypotheses are with respect to the filtering of TCP/IP packets

based on IP addresses and port numbers.

Hypothesis 1 In general, from any client to any destination if a SYN packet is

2Bridges are “hidden” Tor relays which are not listed in the public network consensus.
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filtered by the GFW then a RST with the same source, destination, and port numbers

will also be filtered. For brevity, we refer to this hypothesis as “RSTs are treated the

same as SYNs.”

Hypothesis 2 There are no conspicuous geographic patterns in the GFW’s failures.

In other words, failures can occur in any part of the country. For brevity, we refer

to this hypothesis as “No geographic patterns in failures.”

Hypothesis 3 In general, the GFW blocks Tor relays by dropping SYN/ACK seg-

ments with IP address and port information that matches known Tor relays. Other

types of filtering seen for Tor relays in China ( e.g., dropping SYN segments) are

a negligible fraction of the censorship. For brevity, we refer to this hypothesis as

“server-to-client blocking.”

Hypothesis 4 At least some of the failures of the GFW are persistent, meaning

that the client and server are able to communicate throughout the day. Note that this

could also be due to intentionally whitelisted destinations, but in this chapter we refer

to all cases where clients in China can access Tor relays as “failures.” For brevity,

we refer to this hypothesis as “some failures are persistent.”

Hypothesis 5 At least some of the failures of the GFW exhibit diurnal patterns,

where a client and blacklisted server can communicate at some times of the day but

not others. For brevity, we refer to this hypothesis as “some failures have diurnal

patterns.”

Hypothesis 6 In general, packets that are subject to censorship traverse at least one

or two hops, and sometimes more, into China before they are dropped by the GFW.

For brevity, we refer to this hypothesis as “blocking is in the backbone.”
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By testing the above hypotheses, we further increase the public’s knowledge about

the GFW and by presenting and evaluating our measurement techniques, we equip

circumvention system developers with a set of tools to analyze and debug censorship

incidents. In summary, this chapter makes the following contributions:

• We describe the first real-world application of the hybrid idle scan [33, 32],

explained in more details in Chapter 4, to a large-scale Internet measurement

problem, in which we measure the connectivity between the Tor anonymity

network and clients in China over a period of four weeks.

• We present and evaluate a novel side channel based on the Linux kernel’s SYN

backlog which enables indirect detection of packet loss.

• We increase the community’s understanding of how the GFW is architected

and how its blocking of the Tor network looks from different clients all over

China.

In the rest of this chapter, we discuss some background of the GFW in Section 5.2

and our measurement techniques in Section 5.3, which is then followed by our exper-

imental methodology in Section 5.4. We analyze the data we gathered and present

results in Section 5.5 and proceed with a discussion of our results in Section 5.6. The

chapter is concluded in Section 5.7. Related work is covered in Chapter 6

5.2 Motivation and GFW Background

The hypotheses enumerated in Section 5.1 were chosen because we wanted to address

the following open questions about the GFW:

• Are there geographic or other spatial patterns in the GFW’s failures? This

is important because such patterns could be exploited by evasion technologies
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if the patterns exist, but if no such patterns exist then evasion efforts should

focus on other aspects of the GFW.

• Are there temporal patterns in the GFW’s failures? There are many different

evasion efforts that periodically test their methods to see if they have been

detected and blocked by the GFW. A solid understanding of temporal patterns

(such as diurnal patterns) will help these projects to better understand the

results of their tests.

• What kinds of packets are filtered in different parts of the country? This is

important, because if an evasion technology is tested in, e.g., Beijing but then

fails to work in another part of the country, the developers of the evasion

technology need to understand why.

• Where in China’s Internet backbone does the filtering occur, and what is the

role of routing? If an evasion technology is being tested from two different

sources in China or two different destinations outside the country, the develop-

ers of the evasion technology may observe two different results for their tests

and they need a good understanding of why this occurs.

Now we give more details about what was known before the work presented in

this chapter. A more comprehensive overview of previous work is given in Chapter 6.

5.2.1 Spatial Patterns

In Chapter 4, we found that a small percentage of tests showed no signs of censorship.

Our tests were taken between clients in China paired with Tor relays outside China.3

However, our experimental methodology was designed to test if the failures in the

3Our work is published at [33, 32]
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censorship observed by Winter and Lindskog [107] were also observed outside of Bei-

jing or not. We made no attempt to choose clients or servers so that spatial patterns

could be identified. In this chapter, our experiments were specifically designed to

identify spatial and geographic patterns in the GFW’s failures.

5.2.2 Temporal Patterns

Neither our previous work nor Winter and Lindskog attempted to characterize tempo-

ral patterns in the GFW’s failures. This kind of characterization is difficult because,

for a general understanding of temporal patterns, spatial patterns must be fully

understood. Otherwise temporal patterns may be specific to one location. Also,

temporal patterns are difficult to extract from idle scan measurements because of

noise. This is why, in our experiments, we used traceroutes from a Tor relay to

analyze temporal patterns.

5.2.3 Details of the Filtering

What kinds of packets are filtered? This is a key question, especially for evasion

technologies that seek to evade the GFW via insertion and evasion in the IP and

TCP layers. Winter and Lindskog described detailed results about what happens

to SYN, SYN/ACK, ACK, and RST packets, but their results were specific to one

location in China: Beijing. Also, any of their experiments that required observation

on the server were only able to be carried out between Beijing and one Tor relay

in Sweden. Our previous work in Chapter 4 had more spatial diversity in their

experiments, but because of the nature of the hybrid idle scan the only packets that

can be tested are SYN/ACKs from server to client and RSTs from client to server.

SYN packets or any kind of stateful connection cannot be tested with the hybrid idle

scan. All of these limitations in previous approaches is why our experiments include
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another—previously unknown—idle scan that uses the SYN backlog to make more

general inferences with a wider spatial variety.

5.2.4 Architecture of the GFW

There are generally regarded to be three theories about how the GFW is architected,

posited in technical papers [24, 110, 23, 11] or other media [36, 100]. One theory

posits that the filtering occurs at choke points where oversea cables carrying inter-

national Internet traffic enter the country. Another theory is that the majority of

the filtering occurs in three big Internet exchange points in Beijing, Shanghai, and

Guangzhou [106], near where international traffic enters the country but positioned

more at central points in China’s backbone network. A third theory that has been

discussed is the possibility that the filtering occurs—or may increasingly occur as

the GFW evolves—at the provincial level [110].

Our results about where the filtering of SYN/ACKs from Tor relays occurs are

largely congruent with Xu et al.’s results about where RST injection based on deep

packet inspection occurs. In their results, CNCGROUP performed most of its RST

injection in the backbone, while CHINANET performed this type of censorship at the

provincial level. Since their study, CNCGROUP has bought CHINANET, but the

censorship at both the backbone and provincial levels, in about the same proportions

as reported by Xu et al., is also apparent in our results. This means that the routers

that perform port mirroring for deep packet inspection are probably the same routers

that enforce access controls such as blocking Tor by source IP address and TCP port.

It also means that where the filtering occurs has not changed significantly since the

study performed by Xu et al..

In addition to providing more information about where the filtering occurs, our

work presented in this chapter raises interesting questions about how the GFW is
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architected, both in terms of implementations at routers and in terms of the big

picture. Winter and Lindskog observed that for Tor relays only the SYN/ACK from

the server is blocked, not the SYN from the client to the server. One of our key

results in this chapter is that this observation also applies to China in general for a

lot of different geographic locations. This raises a question: why block SYN/ACKs

in the one direction, but not SYNs in the other?

One possible theory might be that the Border Gateway Protocol (BGP) plays

a key role in the censorship by causing all international traffic to flow through the

routers that implement the censorship. Because the GFW operators are presumably

restricted to announcing BGP routes for autonomous systems (ASes) that are in

China, they can only control routing in the direction of traffic that is entering China.

Hence SYN/ACKs from Tor relays outside China to clients in China are blocked

almost all the time, while SYNs from clients in China to Tor relays outside China

are much less likely to be blocked.

Another theory is based on speculating about the way the GFW operators moni-

tor traffic to decide what to block. In a description of the GFW written in Chinese by

“Xylon Pan” [111], it is speculated that this is done because the server in an HTTP

connection typically sends a lot more content to the client than the client sends to

the server. Thus Netflow aggregation in the server-to-client direction works better,

because there is more traffic to be sampled. One theory put forward by Xylon Pan

is that since the GFW’s operators think about network flows in the server-to-client

direction, so they also write access controls (such as the blocking of Tor by IP address

and TCP port) for the server-to-client direction.

The reason why this one-way blocking property (where SYN/ACKs entering

China are much more likely to be blocked than SYNs leaving China) exists is left for

future work. The major contribution of our present work in this regard is to confirm

that this property is a general property that is observed all over China, not just in
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the one or two locations where previous tests [107, 111] have been performed.

5.3 Networking Background

The research questions we seek to answer require high geographical diversity of clients

in China. Typically, such a study would only be possible if we could find and control

vantage points in all of China’s provinces. Instead, we exploit side channels allowing

us to detect intentional packet dropping—without controlling the two affected ma-

chines. In particular, we use hybrid idle scans (see Chapter 4 and Section 5.3.3) and

SYN backlog scans (see Section 5.3.1). The idea behind these side channels as well

as their prerequisites are discussed in this section.

5.3.1 Side Channels in Linux’s SYN Backlog

A performance optimization in the Linux kernel’s SYN backlog can be used to detect

intentional packet dropping. Half-open TCP connections of network applications

are queued in the kernel’s SYN backlog whose size defaults to 256. These half-

open connections then turn into fully established TCP connections once the server’s

SYN/ACK was acknowledged by the client. If a proper response is not received

for an entry in the SYN backlog, it will retransmit the SYN/ACK several times.

However, if the SYN/ACK and its respective retransmissions are never acknowl-

edged by the client, the half-open connection is removed from the backlog. When

under heavy load or under attack, a server’s backlog might fill faster than it can be

processed. This causes attempted TCP connections to not be fully handled while

pending TCP connections time out. The Linux kernel mitigates this problem by

pruning an application’s SYN backlog. If the backlog becomes more than half full,

the kernel begins to reduce the number of SYN/ACK retransmissions for all pending
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connections [2]. As a result, half-open connections will time out earlier which should

bring the SYN backlog back into uncritical state. We show that the Linux kernel’s

pruning mechanism—by design a shared resource—opens a side channel which can be

used to measure intentional packet drops targeting a server. This is possible without

controlling said server.

Our key insight is that we can remotely measure the approximate size of a server’s

SYN backlog by sending SYN segments and counting the number of corresponding

SYN/ACK retransmissions. Starting with version number 2.2, the Linux kernel

retransmits unacknowledged SYN/ACK segments five times [3]. As a result, we

expect to receive the full number of five retransmissions when querying a service

whose SYN backlog is less than half full. If, on the other hand, the backlog becomes

more than half full, we will observe less than five retransmissions. When applied to

the problem of intentional packet dropping, this allows us to infer whether a firewall

blocks TCP connections by dropping the client’s SYN or the server’s SYN/ACK

segment.

It is worth mentioning that a server’s backlog state can also be inferred by coercing

it into using SYN cookies [34]. A server using SYN cookies reveals that its SYN

backlog is completely full. However, this measurement technique is effectively a

SYN flood and TCP connections which were established using SYN cookies suffer

from reduced throughput due to the lack of flow control window scaling. In contrast

to triggering SYN cookies, our technique has no negative impact on servers or other

clients’ connections, when applied carefully.

5.3.2 The Global IP Identifier

As described in Section 4.1, IP identifiers (IPIDs) are unique numbers assigned to

IP packets in case they are fragmented along a path. The receiving party is able
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to reassemble the fragmented packets by looking at their IPID field. Most modern

TCP/IP stacks increment the IPID field per connection or randomize it, as opposed

to globally incrementing it. A machine with a globally incrementing IPID keeps a

global counter that is incremented by 1 for every packet the machine sends, regardless

of the destination IP address. Being a shared resource, the IPID can be used by a

measurement machine talking to a remote machine to estimate how many packets

the remote machine has sent to other machines. Throughout this chapter, we refer to

machines with globally incrementing IPIDs as simply machines with “global IPIDs.”

5.3.3 Hybrid Idle Scan

In Chapter 4, we described our method for remotely detecting intentional packet

drops on the Internet via side channel inferences. This technique can discover packet

drops (e.g., caused by censorship) between two remote machines, as well as infer

in which direction the packet drops are occurring. The only major requirements

for this approach are a client with a global IPID and a target server with an open

port. Access to the client or the server is not required. Conceptually, the hybrid idle

scan technique can turn approximately 1% of the total IPv4 address space [33] into

measurement machines that can be used as vantage points to measure IP address-

based censorship—without having root access on those machines. This is why we

employ the hybrid idle scan technique for our geographic study of how Tor is blocked

in China.

As shown in Figure 4.1, the hybrid idle scan implementation queries the IPID

of the client to create a time series. By sending SYN/ACKs from the measurement

machine and receiving RST responses, the IPID of the client can be recorded. The

time series is used to compare a base case (when no traffic is being generated other

than noise) to a period of time when the server is sending SYN/ACKs to the client

(because of our spoofed SYNs). By comparing two phases, one phase where no SYN
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packets are sent to the server and one phase where SYN packets are sent to the

server with the return IP address spoofed to appear to be from the client, the hybrid

idle scan technique can detect three different cases (plus an error case), shown in

Figure 4.1, with respect to IP packets being dropped by the network in between the

client and the server:

1. Server-to-client-dropped: SYN/ACKs are dropped in transit from the

server to the client causing the client’s IPID to not increase at all (except

for noise). See Figure 4.2.

2. No-packets-dropped: If no intentional packet dropping is happening, the

client’s IPID will go up by exactly one. See Figure 4.3.

3. Client-to-server-dropped: The RST responses sent by the client to the

server are dropped in transit. In this case, the server will continue to retransmit

SYN/ACKs and the client’s IPID will get incremented by the total number of

(re)transmitted SYN/ACKs, which is typically three to six. See Figure 4.4.

4. Error: A measurement error happens if networking errors occur during the

experiment, the IPID is found to not be global throughout the experiment, a

model is fit to the data but does not match any of the three non-error cases

above, the data is too noisy and intervention analysis fails because we are not

able to fit a model to the data, and/or other errors.

Note that these cases are the same cases as used for Chapter 4.

Auto-regressive moving average (ARMA) models are used to distinguish these

cases. This overcomes autocorrelated noise in IPID values (e.g., due to packet loss,

packet delay, or other traffic that the client is receiving). More details about the

ARMA modeling are described in Section 4.4
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5.3.4 The Tor Network

The Tor network [28] is an overlay network which provides its users with anonymity

on the Internet. Tor clients expose a local SOCKS interface which is used to

anonymize TCP streams such as web traffic. As of April 2014, the network con-

sists of approximately 4,500 volunteer-run relays, nine directory authorities, and one

bridge authority. While the relays anonymize the network traffic of Tor clients, the

authorities’ task is to keep track of all relays and to vote on and publish the network

consensus which Tor clients need in order to bootstrap. It is trivial for censors to

download the hourly published network consensus and block all IP address/TCP port

pairs found in it. Other circumvention systems suffer from the same problem [71].

All authorities are hard-coded in the Tor source code and their IP addresses

remain static. As a result, they constitute attractive choke points for censors. In

fact, blocking the IP addresses of all nine directory authorities is sufficient to prevent

direct connections to the Tor network.4 Our study focuses on the reachability of the

authorities and relays, as it is known that the GFW is blocking them [107]. Our

focus is on gathering more details about this blocking and characterizing it with a

large-scale spatiotemporal study.

5.4 Experimental Methodology

In this section, we describe the challenges our experimental methodology was de-

signed to address, the data sets we collected, how our measurements help us to test

the hypotheses enumerated in Section 5.1, and other issues.

4Note that the Tor Project designed and implemented so-called bridges to tackle this
very problem but the details are outside the scope of this work.
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5.4.1 Encountered Challenges

Over the course of running our experiments and analyzing our data, we faced a

number of challenges which we discuss here.

Churn in the Tor network: While the size of the Tor network does not vary

considerably over a short period of time, the network’s churn rate can render longitu-

dinal studies difficult. For example, the median size of Tor’s network consensus (i.e.,

the number of Tor relays in the network) in March 2014 was 5,286. In total, however,

March has seen 13,343 unique relays—many of which were online for only hours. To

minimize the chance of selecting unstable Tor relays for longitudinal studies, only

relays having earned the “Stable” flag should be considered [96]. Furthermore, the

relay descriptor archives could be examined to calculate a relay’s reachability over

time [95]. We selected only Tor relays that had an uptime of at least five days, and

filtered out all data points where a node appeared to have left the network. After

having run our experiments, we removed one Tor relay in Argentina from our data

because its Tor and web ports switched during our experiments.

Geolocation of routers: For geolocating routers, we used MaxMind’s GeoIP2

City database [65]. As of April 2014, this database lacks accurate geolocation in-

formation for backbone routers in China. While provincial routers can typically be

mapped to their province based on whois records, backbone routers are all mapped

to the same bogus location at latitude 35 and longitude 105 which resides in an

unpopulated area in central China. We also used MaxMind for geolocating clients,

for which it is fairly accurate. For the location of routers, we used a combination

of whois information and round-trip delays per hop. We discarded hops in our data

that have whois records from China but are actually in Hong Kong or Pasadena,

California (where ChinaNet has a Point of Presence).

Diurnal patterns: For most measurements in this chapter, we measured once
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per hour throughout the day. This avoids bias and distortion. For example, if we

measured one set of clients in the morning and one set at night, differences between

the two sets of clients may be due to different traffic patterns at the different times

of day and not a property of the different set of clients. Thus we always randomize

the order of our experiments when possible and repeat all measurements every hour

for at least one full day.

5.4.2 Experimental Design and Setup

Over the course of our experiments, we made use of three sets of Linux-based mea-

surement machines in the U.S., China, and Europe. These three sets of machines

correspond to the three main datasets that we collected.

Machines in the U.S.: The three machines used for our hybrid idle scans

(see Section 5.3.3 and for more details Chapter 4) and SYN backlog scans (see Sec-

tion 5.3.1) were located at our university campus (UNM) at the University of New

Mexico. All machines had a direct link to a research network which is free from

packet filtering and does not conduct egress filtering to block spoofed return IP ad-

dresses. Furthermore, the UNM measurement machines have IP addresses that are

not bound to any interfaces in order to eliminate unsolicited network packets. For

example, a measurement machine’s kernel should never send a RST when it receives

a SYN/ACK. The data set collected using the hybrid idle scan from these machines

is a large-scale geographic pairing of many clients (in China and other countries)

with many Tor relays and web servers around the world (mostly outside China). It

complements the other data sets discussed below because it gives a complete cross-

section of censorship between many clients and many servers. This data will be used

to test Hypotheses 2 (no geographical patterns in failures) and 4 (some failures are

persistent).
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VPS in China: We rented a virtual private system (VPS) in China. The

system was located in Beijing (AS 23028) and was used for our SYN backlog scans

discussed in Section 5.3.1. Our VPS provider employed a transparent and stateful

TCP proxy in front of our VPS which silently dropped unsolicited segments. We

carefully implemented our SYN backlog scans so they first established state whenever

necessary to be unaffected by the TCP proxy. These SYN backlog scans provide a

dataset that speaks to our assumptions about how China blocks Tor. It complements

the hybrid idle scan data set because, although the measurements are from a single

client in China, it allows us see exactly how that client experiences the censorship.

This data will be used to test Hypotheses 1 (RSTs are treated the same as SYNs)

and 3 (server to client blocking).

Tor relay in Europe: We used a long-established Tor relay at Karlstad Uni-

versity in Sweden for our traceroute measurements discussed in Section 5.4.2. The

relay has been part of the Tor network for several months, and using our VPS we

manually verified it to be blocked in China. This data set shows blocking between

one Tor relay and many clients in China. It complements the hybrid idle scan data

set because access to the Tor relay allows us to collect more details about the block-

ing. This data will be used to test Hypotheses 4 (some failures are persistent), 5

(some failures have diurnal patterns), and 6 (blocking is in the backbone).

We now present our probing infrastructure as well as our measurement method-

ology used to investigate the theories posited in Section 5.3.

Hybrid Idle Scans

Recall that by using hybrid idle scans, we have more freedom in choosing clients

in different regions to test their reachability to different servers. Our goal is to

determine blocking of Tor relays (outside of China) from the perspective of a large
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and geographically diverse set of clients (within China).

We are interested in knowing whether there exist different experiences of the cen-

sorship of Tor for different users in different regions. Past work showed that a small

fraction of all Tor relays was accessible from a single vantage point in Beijing [107],

but what about the rest of the country? Key questions are: how does the GFW’s

architecture and China’s routing affect censorship in different regions?

IP address selection: We selected clients in China (CN), North America (NA),

and Europe (EU). In order to be able to select random IP addresses in China with-

out favoring specific locations—especially large cities featuring a vast number of

allocated IP addresses—we divided the map of China into 33∗65 cells corresponding

to one degree of latitude and longitude. We filled this grid with all IP addresses

in MaxMind’s database that were documented to be in China. Then, we collected

IP addresses by randomly selecting a cell from our grid after checking that they

employed global IPIDs. In an analogous manner, clients from the EU and NA were

chosen by horizontally scanning these regions. After 24 hours, we gathered a pool

of IP addresses that belonged to machines with a global IPID. Then, we continually

checked the selected IP addresses for a 24-hour period to discard IP addresses that

changed global IPID behavior, went down, or were too noisy. At the end we had 11

NA, 7 EU, and 161 CN clients to use for our measurements.

Servers were chosen from three groups: Tor relays, Tor directory authorities, and

web servers. Tor relays were downloaded from a Tor relay status list [99]. We only

selected relays with an uptime greater than five days. In order to select Tor relays in

geographically diverse regions, we selected 10 Tor relays from Europe, 13 from the

United States, 20 from Russia, and 101 from other countries. This way, our selected

Tor relays were not biased toward Europe or the U.S., which exhibit more relays per

capita than other regions. The 10 Tor authorities were obtained from the Tor source

code. Web servers were chosen randomly from Alexa’s top 50 websites in China [8].

78



Chapter 5. Large-scale Spatiotemporal Characterization of Inconsistencies in GFW

Figure 5.2: The geographic distribution of all tested Tor relays (shown as onions)
and of our global IPID clients in China (shown as red marks). Note that outside
of Xinjiang the west of China has very little Internet penetration, which is why we
have few data points in this region and the distribution is biased towards the eastern
parts of China. (Map data c� 2014 Google, INEGI)

All web server and Tor relay IP addresses were checked hourly to make sure that

they stayed up for at least 24 hours before being selected for our measurement.

The geographic distribution of our Tor relays as well as all clients in China is

illustrated in Figure 5.2.

Creating a complete bipartite graph: We used three machines at UNM

(our university campus) to run the hybrid idle scan experiments. We started the

experiments with 180 clients and 176 servers. Each day 20 clients and approximately

20 servers were selected for each of the machines. For 22 hours5, every hour, we

performed the hybrid idle scan for each possible pair of client and server. Every

“scan round” performs: 1) two minutes of hybrid idle scans, 2) 30 seconds of sending

RSTs to clear the server’s backlog, and 3) five seconds of testing the client to assure

5Two hours per day were reserved for server data synchronization.
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that they remained online and kept their global IPID. Similar checks are performed

to ensure that servers remain online throughout each experiment. At any given time,

each IP address (client or server) was involved in only one test. After 27 days, each

client’s reachability was tested to all servers, i.e, our clients and servers created a

bipartite graph. For more details about the experiment design refer to Chapter 4.

Pruning the data: We used the selected IP addresses throughout our experi-

ments. Naturally, some of the hosts went down or were occasionally too noisy. Also,

the host behind an IP address can change, e.g., a client with a global IPID might

lose its DHCP lease and get replaced with a client running a random IPID. To ac-

count for these issues, we perform tests throughout our experiments which cull out

data points where basic assumptions are not met. For every server involved in the

experiment, we had two checks: liveliness and the stable Tor flag test. After each

scan, for five seconds we sent five SYN segments per second using UNM’s unbound

IP address. The data point passed the liveliness test only if it retransmits three or

more SYN/ACKs. Also, if the server was a Tor relay, we verified that the relay was

assigned the “Stable” flag (cf. Section 5.4.1).

For every client, for five seconds, we sent five SYN/ACKs per second using UNM’s

unbound IP address. We expect the client to respond with RST segments totaling

in number to more than half the number of sent SYN/ACKs. If this is the case then

the data point passes the client’s liveliness test. The results of a scan were allowed

into the data set only if both the client and server passed their checks. Note that

each data point is one client and one server tested one time in a given hour. There

was a several-hour network outage that caused a hole in a portion of one day of our

data.

After culling out data that did not meet our basic assumptions, we were left with

36% of the total data collected. This 36% is the data described in Section 5.5 and

used for our analysis.
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Backlog Scans

After having presented the underlying side channel in Section 5.3.1, we now discuss

the implementation of our two backlog scan types which can answer two questions, 1)

“Do SYN segments from China reach a Tor relay?” and 2) “Do RST segments from

China reach a Tor relay?”. Basically, we answer both questions by first transmitting

crafted TCP segments to a relay, thus manipulating its SYN backlog, and then

querying its backlog size by counting the relay’s SYN/ACK retransmissions. The

conceptual implementation of both scan types is illustrated in Figure 5.3.

Time

MMTorVPS

145 SYNs
5 SYNs 

backlog >
50% full

SYN/ACKSYN/ACK
?

SYN/ACK

Backlog SYN scan

(a) SYN scan to infer whether
SYN segments from VPS reach
Tor. “MM” is our measurement
machine.

Time

MMTorVPS
10 SYNs 

backlog >
50% full

145 RSTs

Backlog RST scan

145 SYN/ACKs 145 SYNs

?

backlog
cleared

(b) RST scan to infer whether
RST segments from VPS reach
Tor. “MM” is our measurement
machine.

Figure 5.3: The two types of backlog scans we employ. The purpose of these scans is
to verify if 1) SYN segments from China reach a Tor relay and if 2) RST segments
from China reach a Tor relay.

SYN scan: The SYN scan—depicted in Figure 5.3(a)—is started by MM by

sending five SYN segments to Tor in order to infer the relay’s backlog size when

under stress.6 After a delay of approximately 500 ms, VPS proceeds by sending

145 SYN segments whose purpose is to fill the relay’s backlog by more than half.

6We transmit five SYN segments rather than just one to account for packet loss.
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Recall that the backlog size defaults to 256, so we only fill the backlog to 59%. That

way, we can make the Tor relay’s kernel prune MM’s SYN segments, thus reducing

their retransmissions. Finally, MM knows that VPS’s SYNs reached the relay if the

number of SYN/ACK retransmissions for its five SYNs is lower than five. Otherwise,

VPS’s SYNs did not reach the relay. This type of inference is necessary because, most

of the time, China’s GFW drops SYN/ACKs from known Tor relays.

RST scan: Our RST scan incorporates an additional step but is based on the

same principle. As illustrated in Figure 5.3(b), MM starts by sending 10 SYN seg-

ments whose purpose is, analogous to the SYN scan, to monitor the relay’s backlog

size. Afterwards, MM proceeds by sending 145 spoofed SYN segments with VPS’s

source address. Note that we cannot send the SYN segments from VPS as they might

be blocked. By sending spoofed SYN segments from an unfiltered network link, we

can ensure that the segments reach the Tor relay. Upon receiving the SYN segment

burst, the relay replies with SYN/ACK segments which we expect to be dropped by

the GFW. In the final step, VPS sends a burst of RST segments to the Tor relay.

The RST segments are crafted so that every RST segment corresponds to one of

the relay’s SYN/ACK segments. The purpose of the RST burst is to terminate all

half-open connections, thus clearing the relay’s backlog. Based on how many re-

transmissions we observe for the 10 “probing SYNs”, we can infer whether the RST

segments were dropped by the GFW or not. Receiving five retransmissions means

that the backlog was not cleared and the RST segments were dropped. Receiving

less than five retransmissions means that the backlog was successfully cleared and

the RST segments were not dropped by the GFW. This kind of inference is neces-

sary because machines outside China cannot measure directly what happens to RST

packets sent from China, and machines inside China are very limited in their ability

to infer what is happening on blocked IP address/TCP port pairs.

Implementation: We implemented our scans using a collection of bash scripts
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and a patched version of the tool hping3 [87]. Accurate timing was crucial for our

experiments. To keep the clock of our machines synchronized, we used the tool ntp

which implements the network time protocol. Recall that the SYN backlog behavior

we are exploiting is limited to Linux kernels (cf. Section 5.3.1). As a result, our

scans targeted the subset of 94 out of our 144 Tor relays which are known to run

Linux. Tor relays periodically publish their server descriptors—which includes their

operating system—to all directory authorities so there is no need for us to guess the

operating system of Tor relays.

Pruning the data: By pruning the backlog scan data, we aim to make sure that

the relay runs an unmodified Linux TCP/IP stack. After scanning a relay, we send

three “baseline SYNs” to it in order to query its original amount of SYN/ACK re-

transmissions. First, we discard scans in which the relay never sent five SYN/ACK

retransmissions, Linux’s default value since version 2.2. For example, we found

embedded Linux relays which always retransmit SYN/ACK segments four times,

regardless of their backlog size. Second, we also discard scans whose SYN/ACK re-

transmissions do not exhibit Linux’s exponential backoff behavior. Third and finally,

we discard scans where the relay was offline or other networking problems occurred.

These three pruning steps discarded 774 out of all 2,094 scans (37%).

Traceroutes into China

We want to learn if there are unfiltered routes leading into China. To investigate this

question, we used our Tor relay in Europe to run traceroutes to numerous destinations

in China. After a country-wide scan, we obtained a list of 3,934 IP addresses in China

that responded to SYN/ACKs and were distributed geographically in a diverse way,

which served as our traceroute destinations. For every IP address, we ran two TCP

traceroutes; one whose TCP source port was equal to the filtered Tor port 9001

and one whose TCP port was set to the unused and unfiltered port 9002. The
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traceroutes had both their SYN and ACK bit set. We used a slightly modified

version of the tool hping3 [87] to run the traceroutes as it allowed us to send TCP

segments with a source port which is bound by the Tor process.7 Starting on 4 May

2014, we ran the traceroutes on an hourly basis for two days, resulting in a total of

3, 934 · 24 · 2 · 2 = 377, 664 traceroutes. We determined where the traceroutes entered

China using whois and round-trip time information. We culled out a small amount

of data that did not enter China through a known backbone network, since all such

data either appeared to enter China in Pasadena, California (a case we can handle

but will require deeper analysis into whois records) or was destined for clients that

we determined to actually be in Hong Kong.

5.4.3 Good Internet Citizenship

We took several steps to devise our scans to be minimally invasive. First, we set

up a web server on our measurement machines whose index page informed visitors

about our experiments. The page contained our contact information to provide

alarmed network operators with an opportunity to contact us and opt out of our

measurements. Furthermore, we carefully designed our measurements so that it is

very unlikely that they harmed any computers or networks. Throughout the lifetime

of our experiments, we did not receive any complaints. We discuss ethical aspects of

our measurements in Section 5.6.3, and also in more details in Chapter 7.

5.5 Analysis and Results

We now analyze the three data sets we gathered; the hybrid idle scans, the backlog

scans, as well as the traceroutes into China.

7We modified the tool to constantly increase the TTL of outgoing TCP segments. The
default behavior is to wait for every hop to reply with a “TTL exceeded” ICMP message.
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5.5.1 Hybrid Idle Scans

The hybrid idle scan data was collected from 15 March 2014 to 10 April 2014. One

client was removed from the data because we determined that it was in Hong Kong

and as a result not subject to the GFW’s filtering.

Table 5.1 shows the results of our hybrid idle scans. The column S → C is

short for Server-to-client-dropped, None means No-packets-dropped, C → S

means Client-to-server-dropped, and Error simply means Error. In the table’s

rows, CN is short for China, EU means Europe, and NA means North America.

As for the server types, Tor−Dir is a Tor directory authority, Tor−Relay is a Tor

relay, and Web is a web server. Our results confirm that, in general, SYN/ACKs

entering China from blacklisted IP address/TCP port pairs are blocked. Some web

servers were censored, and some Tor nodes were censored outside China. This is

to be expected because even in countries that do not perform nation-scale Internet

censorship, organizations frequently take steps to filter material such as pornography

or file sharing sites. Note that highly popular websites often contain material that

is subject to censorship.

The most interesting result from the hybrid idle scans is that the No-packets-

dropped case was measured all over the country without any noticeable geographic

pattern. The geographic distribution of observed No-packets-dropped cases is

shown in Figure 5.4. The case distribution closely matches the distribution of our

clients which, in turn, matches the geographic Internet penetration patterns of China.

This means that the failures in China’s IP address/TCP port blacklisting mechanisms

are not limited to one region or one network block. We provide a more thorough

analysis in Section 5.5.2, which confirms Hypothesis 2.

We also observed that in many cases these filtering failures are persistent and last

throughout the day. We witnessed four client/server pairs where all 22 measurements
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Figure 5.4: The color temperature for clients corresponds to the number of observed
No-packets-dropped cases over the entire experiment. No geographic or topo-
logical pattern is visible. Instead, the distribution matches the geographic Internet
penetration patterns of China. (Map data c� 2014 Basarsoft, Google, ORION-ME,
SK planet, ZENRIN)

in a day returnedNo-packets-dropped. We redacted the clients’ 16 least significant

bits:

Client 58.193.0.0 (CN) → server 198.96.155.3 (CA)

Client 58.193.0.0 (CN) → server 161.53.116.37 (HR)

Client 58.193.0.0 (CN) → server 128.173.89.245 (US)

Client 121.194.0.0 (CN) → server 198.96.155.3 (CA)

This would give evidence towards Hypothesis 4, but our traceroute results re-

veal that CERNET does not perform the type of blocking we are measuring at
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all so later in this section we will discuss similar failures in commercial networks.

Clients 58.193.0.0 and 121.194.0.0 are part of the Chinese Educational and Research

Network (CERNET). Server 198.96.155.3 is a long-established Tor exit relay at the

University of Waterloo. 161.53.116.37 and 128.173.89.245 are Tor relays in Croa-

tia and the U.S., respectively. There were also many instances where client/server

pairs showed Server-to-client-dropped for most of the day but also showed No-

packets-dropped once or a handful of times.

Table 5.1: Results from the hybrid idle scan measurement study.
Client Server S → C (%) None (%) C → S (%) Error (%)

CN Tor−Relay 116,460 (81.52) 555 (0.39) 786 (0.55) 25,061 (17.54)
CN Tor−Dir 8,922 (64.91) 31 (0.23) 2,696 (19.61) 2,097 (15.25)
CN Web 306 (1.23) 15,663 (62.95) 2,688 (10.80) 6,226 (25.02)
EU Tor−Relay 18 (0.20) 8,589 (96.79) 22 (0.25) 245 (2.76)
EU Tor−Dir 2 (0.25) 776 (96.76) 0 (0.00) 24 (2.99)
EU Web 19 (1.23) 1,333 (86.28) 95 (6.15) 98 (6.34)
NA Tor−Relay 45 (0.39) 11,022 (94.48) 33 (0.28) 566 (4.85)
NA Tor−Dir 4 (0.37) 1,025 (94.73) 3 (0.28) 50 (4.62)
NA Web 32 (1.52) 1,794 (85.06) 98 (4.65) 185 (8.77)

5.5.2 Temporal and Spatial Association

We now seek to answer the question of whether there are any temporal or spatial

associations among the No-packets-dropped cases observed for Tor relays tested

from within China.

Temporal association is shown in Figure 5.5. The probabilities are computed by a

simple counting technique. We have the hourly count of the number of No-packets-

dropped cases for each source. For each occurrence of No-packets-dropped, we

check if there are otherNo-packets-dropped cases in the subsequent hours. We use

151 sources for this calculation, excluding the educational sources, which contained

353No-packets-dropped cases in total. The final probabilities are averaged over all
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Figure 5.5: The temporal association between cases of No-packets-dropped. The
x axis shows the amount of hours since the last No-packets-dropped case whereas
the y axis shows the probability of observing another case of No-packets-dropped.

sources. With the increase in the lag amount in the x-axis, the probability decreases.

This shows that No-packets-dropped cases generally happen in bursts of hours.

Spatial association is shown in Figure 5.6. We use the latitude and longitude of

the sources as two-dimensional coordinates. The curvature of the earth is ignored

while computing the distance between sources. For every source, we find the geo-

graphically K-nearest neighboring sources and average their count. We compute the

Pearson’s correlation coefficient between the count of No-packets-dropped cases

for a source and the average of the same for the neighboring sources. Note that

Pearson’s correlation has a range of −1.0 to 1.0. Our maximum observed correlation

value of 0.26 is, therefore, a very weak positive correlation and supports the fact that

there is no significant geographical association between sources and their neighbors.

With the increase of the neighborhood radius, the correlation decreases to below

0.1. Together with the fact that the cases of No-packets-dropped are distributed

fairly evenly in all geographic regions (see Figure 5.4), this is strong support for

Hypothesis 2.
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Figure 5.6: Spatial association between clients in China. The x axis shows the
neighborhood radius (k) and the y axis shows the Pearson correlation coefficient.

5.5.3 SYN Backlog Scans

We began our backlog scans on 24 March 2014 and ran them twice a day with

approximately 12 hours in between the scans until 10 April 2014. We gathered a

total of 2,094 scans and after pruning, this effort yielded 1,320 scans (63%).

Reachable Tor Relays

Out of all 1,320 backlog scans, 33 scans (2.5%) to 12 unique IP addresses con-

tained the respective Tor relay’s SYN/ACK segments, indicating that no filtering

was happening. Interestingly, 19 of these 33 scans targeted the directory author-

ity 128.31.0.39 on port 9131. Only the RST scan and not the SYN scan yielded

SYN/ACKs from the directory authority.

The results in Table 5.2 show that, in general, if a RST packet passes through

the GFW then a SYN packet also will. This confirms one of the basic assumptions

behind the hybrid idle scan, and confirms Hypothesis 1. Also, the fact that most
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Table 5.2: Backlog scan results.
RST passes RST dropped

SYN passes 666 (80%) 39 (4.7%)
SYN dropped 68 (8.2%) 53 (6.4%)

Table 5.3: The results of our traceroute measurements.
EDU Rand EDU Tor COM Rand COM Tor

Stalled 1,061 1,045 111,133 163,095
Finished 428 433 53,479 429

SYNs were allowed to pass through the GFW confirms Hypothesis 3.

5.5.4 Traceroutes

Table 5.3 shows the results of our traceroute measurements. In the table, “EDU”

indicates that the first hop in China in the traceroute is the educational and research

network backbone, CERNET (210.250.0.0/16 or 101.4.112.0/24) or another scientific

network called CSTNET (159.226.0.0/16). “COM” indicates that the first hop in

China was a commercial backbone, one of: CNCGROUP (219.158.0.0/16), China

Telecom/CHINANET (202.97.0.0/16), China Mobile Communications Corporation

(211.136.1.0/24 or 221.176.23.0/24), or the China Telecom Next Carrying Network

backbone (50.43.0.0/16). All other entry points were thrown out because they were

actually in Hong Kong or Pasadena, and that usually indicated that the destination

IP address was not in China or non-Chinese routing hops had not been properly

culled. “Tor” means that the source port of the SYN/ACKs sent in the traceroute

was the Tor port, and “rand” means that the source port was another port that

the GFW does not filter. Thus, “Tor” traceroutes should always stop before the

destination host if the filtering is effective on that route, and “rand” should reach

the destination unless there are other types of filtering in play, such as ICMP filtering

or firewalls not related to censorship. The elements in the table are the number of

90



Chapter 5. Large-scale Spatiotemporal Characterization of Inconsistencies in GFW

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hop count into China

A
m

ou
nt

1
10

10
00

Figure 5.7: The amount of hops (log scale) in China, our filtered traceroutes could
traverse. For example, a hop count of five means that a traceroute could successfully
reach the fifth router inside China.

times that a traceroute reached all the way to the destination.

Surprisingly, the educational and research networks, in particular CERNET, do

not seem to be implementing this type of filtering at all. The “Tor” and “rand”

columns are nearly identical for the “EDU” traceroutes. The “COM” traceroutes,

however, show that commercial networks are clearly censoring Tor by dropping

SYN/ACKs. The “rand” traceroutes reached their destination 53,479 times, while

the “Tor” traceroutes aimed at the same destinations only reached the destination

end host 429 times. Similar to the hybrid idle scan results, these failures were all

over the country and for any destination IP address where at least one failure was

observed, the number of failures ranged from 1 to 48 (i.e., all 48 hours of mea-

surements). The number of failures in the most prominent destinations where the

traceroute entered China on a commercial background included one instance where

48 failures were observed and two where 47 were observed. This means that some-

times the failures are relatively persistent, confirming Hypothesis 4.

Figure 5.7 shows the amount of hops into China, filtered “Tor” port traceroutes

traversed before stalling. For each measurement of each hour of each day, we only

add the data to Figure 5.7 if the “rand” traceroute reached the destination and the
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Figure 5.8: The amount of unfiltered traceroutes from our Tor relay to clients in
China over time. A diurnal pattern is visible.

“Tor” traceroute did not. In most cases, the filtered packets make it two hops into

China, confirming Hypothesis 6.

Figure 5.8 shows the number of failures for traceroutes that entered China on the

commercial network backbone, per hour. The diurnal patterns apparent in the figure

confirm Hypothesis 5. Note that 02:00 UTC is 10:00 (or, 10:00 am) in Beijing.

5.6 Discussion

We discuss three different aspects of our work in this section: what we learned about

the filtering of Tor in China, what we learned about the architecture of the GFW,

and ethical considerations.

5.6.1 Filtering of Tor in China

Our results suggest that the filtering of Tor in China has several interesting aspects,

some of which may even be useful for circumvention efforts. We showed that the

failures in the filtering occur in every part of the country, and they are sometimes
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Figure 5.9: The amount of directly connecting Tor users over the first seven months
of 2013. The diagram shows several spikes and a “valley” in between March and
May.

intermittent and sometimes persistent. A historical example of intermittent failures

is illustrated in Figure 5.9. The diagram shows the amount of directly connecting

Tor users in China in the first seven months of 2013. A relatively stable “valley” in

between March an May is clearly visible. This valley is surrounded by significantly

higher usage numbers.

We also showed that this type of filtering does not occur on CERNET, the educa-

tional and research backbone of China’s Internet. This might suggest that CERNET

users can reach the Tor network, or it might suggest that CERNET employs a more

sophisticated method for detecting and interfering with connections to the Tor net-

work, perhaps something stateful and based on deep packet inspection.

Our results raise additional questions such as “is it possible to run a Tor relay

in China?”. In general, the Tor network represents a complete graph. As a result,

every relay should be able to connect (and generally maintain connections) to all

other relays in the network. Furthermore, relays must be able to connect to the

directory authorities in order to upload their server descriptors. If CERNET is

indeed whitelisted, a Tor relay inside CERNET might be able to successfully join
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the Tor network. In addition, previous research suggested that domestic Tor traffic

in China is not subject to blocking [107]. If filtering indeed happens at the Internet

exchange point (IXP) level, as suggested by our data, it is not surprising that the

GFW is generally unable to filter domestic network traffic as it typically does not

reach IXP level8 and is of significantly higher volume than international traffic. As

a result, functioning Tor relays or bridges inside CERNET might be able to connect

users in China to the rest of the Tor network.

5.6.2 The Architecture of the GFW

Our results also shed light on the architecture of the GFW, at least with respect to the

mechanism that blacklists IP address/TCP port pairs. As discussed in Section 5.3,

the three theories about how the GFW is architected are that 1) the filtering occurs

at choke points where undersea cables enter the country, 2) the filtering occurs in

the backbone in large IXPs, and 3) the filtering occurs at a regional level. While our

results show some filtering occurring many hops into China and some filtering occur-

ring before packets can even enter China, the majority of the filtering happens about

two hops into China (presumably at the large IXP in Beijing). Thus, Hypothesis 6 is

most consistent with the theory that the filtering occurs in the backbone. Note that

this observation is in accordance with other recent research efforts which focused on

the GFW’s DNS injection [11]. The small amount of routes that are filtered at the

provincial level, which were also observed by Xu et al. [110], can be explained by the

strategy employed by China’s formerly second-largest ISP, CNCGROUP, which was

recently bought by the largest (CHINANET).

While whitelisting would appear as persistent failures in the filtering and the

filtering apparatus getting overloaded with traffic would appear as intermittent fail-

8We ignore routing phenomena such as “boomerang routing”.
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ures, the mix of intermittent failures and diurnal patterns with persistent failures

suggests that routing is a major reason why the filtering fails. Hypotheses 4 and 5

are most consistent with the theory that the filtering occurs in the backbone, because

provincial networks in China are very hierarchical [97] and undersea cables are few

in number [6]. Hypothesis 2 is also most consistent with backbone-level filtering for

this reason.

5.6.3 Ethical Considerations

Our work has two ethical considerations that need to be discussed. First, our SYN

backlog scans briefly fill a Tor relay’s backlog in order to be able to observe packet

drops. In general, the rate at which we are sending SYN packets, without intention

of completing a connection, is not enough to create a denial-of-service condition on

any modern network stack.

Second, our idle scans create unsolicited traffic between a client and a server. This

traffic—which can be observed by the censor—is only SYN/ACKs from the server to

the client and RSTs from the client to the server. As a result, we are not causing any

meaningful communication other than background noise as it is also caused by port

scanning activity. In terms of the traffic that the censor sees, the hybrid idle scan

technique is no different from if Tor relay operators performed simple connectivity

measurements by directly sending SYN/ACKs.

For more detailed discussion on ethics, refer to Chapter 7.
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5.7 Conclusion

In this chapter, we have characterized the mechanism that the Great Firewall of

China uses to block the Tor network using a hybrid idle scan that can measure

connectivity from the perspective of many clients all over China. We have also

presented a novel SYN backlog idle scan that can infer packets received by a server

without causing denial of service. These novel Internet measurement techniques

open up whole new possibilities in terms of being able to measure the Internet from

the perspective of arbitrary clients and servers. This is extremely important when

it comes to characterizing and documenting Internet censorship around the world,

because of the difficulty in finding volunteers geographically dispersed throughout a

country.

We also evaluated our techniques which led to several new insights about the inner

workings of the Great Firewall. Our data shows that 1) at least several machines

inside CERNET (China Education and Research Network) are able to connect to Tor

relays, 2) filtering seems to be centralized at the IXP level, and 3) filtering is quite

reliable with the Tor network being either almost completely reachable or almost

completely blocked in different parts of the country.

Our code is available at: http://cs.unm.edu/~royaen/gfw/.
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Related Work

This chapter will give an overview of related work in idle and port scanning techniques

(see Section 6.1) and censorship measurement (see Section 6.2).

6.1 Idle and Port Scanning

Port scanning is an important first step in most network attacks and in network

analysis [73]. There has been a fair amount of techniques focused on port scanning

a target host or a network. Port scans can be initiated from a single source and

can be detected by using techniques such as anomaly detection [51]. They can

also be distributed, meaning that the attacker uses multiple hosts to coordinate a

stealth scans [38, 39, 47]. Javed et al. proposed a general approach for detecting

distributed scans in which individual attack sources each operate in a stealthy, low-

profile manner. Bhuyan et al. [17] created a survey on port scans and their detection

methodologies.

In general, there have been many efforts to detect port scans. Staniford et al. [93]

use simulated annealing to detect stealthy scans. Leckie and Kotagiri [54] present a
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probabilistic approach for detecting port scans, and Muelder et al. [70] proposes a

visualization approach. The scan behavior of Internet worms has been studied [88,

105, 42, 104], as has the scan detection problem at the backbone level [92, 91] and

measurements of port scans and their side effects at Internet telescopes [72]. Jung et

al. [46] describe an approach based on sequential hypothesis testing to detect port

scans. To our knowledge, our techniques in Chapter 3 represent the first study to

model idle scans that can be used for stealth scans but also for inferring IP-based

trust relationships. Passively identifying hosts that have no routable IP address

and are hidden by network address translation [14, 53] is a related problem to idle

scans, but assumes a very different threat model where some amount of traffic can

be viewed passively by the attacker. As discussed earlier, Antirez [12] proposed the

first type of idle scan which we call an IPID idle port scan. Based on Antirez’ work,

we proposed a RST, SYN backlog, and a hybrid idle scans which were all explained

in detail in previous chapters. The main benefit of using our hybrid idle scan is

that it can be used to detect intentional packet dropping based on IP addresses

and it requires no commonalities between the measurement machine’s routes to the

server or client and the routes between the server and client. Similar to our work

is iPlane [59]. The iPlane project sends packets from PlanetLab nodes to carefully

chosen hosts, and then compounds loss on specific routes to estimate the packet loss

between arbitrary endpoints without access to those endpoints. This, however, does

not detect IP-address-specific packet drops.

There exist other advanced methods for inferring information about remote net-

works and hosts. Qian et al. [79] demonstrate that firewall behavior with respect

to sequence numbers can be used to infer sequence numbers and perform off-path

TCP/IP connection hijacking. Chen et al. [21] use the IPID field to perform ad-

vanced inferences about the amount of internal traffic generated by a server, the

number of servers in a load-balanced setting, and one-way delays. Morbitzer [68]

explores idle scans in IPv6. Knockel et al. use a side-channel technique to infer
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whether two machines are exchanging packets on the Internet [52]. Queen [102] uti-

lizes recursive DNS queries to measure the packet loss between a pair of DNS servers,

and extrapolates from this to estimate the packet loss rate between arbitrary hosts.

Reverse traceroutes can be performed by spoofing return IP addresses and using the

IP options for recording routes and timestamps [48]. De A. Rocha et al. [25] present

a method for estimating the average variance and delay based on spoofed return IP

addresses and the IPID field. Qian et al. make use of the IPID field to infer in which

direction port blocking is happening in the context of email spamming [80].

6.2 Censorship Measurement

I consider censorship to be one of the most important issues facing the Internet today.

Accordingly, there is a growing body of work in this area. With respect to deployed

platforms that have been used for censorship, Sfakianakis et al. [89] designed Cens-

Mon that is a web censorship monitor which is run on top of PlanetLab [77]. Filastò

and Appelbaum presented OONI [37] that can be used to measure traffic manipula-

tion and content blocking. Herdict [45] and OpenNet [69] have been monitoring and

reporting on Internet filtering and surveillance practices. The Chokepoint project [4]

is focused on the collection, analysis, and reporting of information related to Internet

blockages and network neutrality issues around the world. More recently, Anderson

et al. [10] proposed to use the RIPE Atlas network [60] to measure censorship. I

believe our work, idle scan inference techniques, is an effective method for measuring

Internet censorship around the world. The most notable difference to previous work

is that our measurement techniques do not require control over either machine which

is part of the censored communication. While this enables large-scale distributed

studies, it comes at the cost of reduced flexibility.

To the best of my knowledge, my work is the first to employ idle scan infer-
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ence techniques for a large-scale Internet measurement study where the collected

data represents the “view” of geographically distributed clients. Platforms such as

DIMES [62], M-Lab [63], PlanetLab [61], and RIPE Atlas [60] have traditionally

been the only way to measure from the perspective of a large number of clients,

but they can be very limited, especially in non-Western regions of the Internet such

as China. My work overcomes a fundamental limitation of Internet measurement:

that measurements traditionally have only been possible from the perspective of the

measurement machines under the control of the researchers.

Next we focus on related work specific to the Great Firewall of China(GFW).

The GFW was first described in an article in 2600 magazine [98]. In 2006, Clayton,

Murdoch, and Watson investigated the firewall’s keyword filtering mechanism and

demonstrated that it can be circumvented by simply ignoring the firewall’s injected

RST segments [23]. Clayton et al.’s study was limited to how the filtering works.

What it filters was covered by Crandall et al. in 2007 [24], along with more details

about routing. Using latent semantic analysis, the authors bootstrapped a set of

122 keywords which were used to probe the firewall over time. The study also

shows that filtering is probably not happening at the border of China’s Internet.

Xu, Mao, and Halderman made an effort to pinpoint where exactly the filtering is h

happening [110]. The authors came to the conclusion that most filtering is happening

in border ASes but some filtering is also happening in provincial networks. Park and

Crandall revisited the GFW’s keyword filtering mechanism and discussed why the

filtering of HTML responses was discontinued in late 2008 [74].

In addition to topology and HTTP filtering, another direction of research focused

on how the GFW operates on the TCP/IP layer. In 2006, Clayton et al. already

showed that the GFW is terminating suspicious HTTP requests using injected RST

segments. Weaver, Sommer, and Paxson showed that it is possible to not only

distinguish genuine from injected RST segments but also to fingerprint networking
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devices injecting the segments [103]. More recently in 2013, Khattak et al. probed

the GFW in order to find evasion opportunities on the TCP/IP layer [50]. Resorting

to techniques first discussed by Ptacek and Newsham in 1998 [78], the authors showed

that there are numerous evasion opportunities when crafting TCP and IP packets.

In addition to the design and topology of the GFW, some work focused on how

the GFW blocks application protocols other than HTTP. In 2007, Lowe, Winters,

and Marcus showed that the GFW is also conducting DNS poisoning [57]. A more

comprehensive study was conducted by anonymous authors in 2012 [90]. The authors

sent DNS queries to several million IP addresses in China, thereby demonstrating

that the GFW’s DNS poisoning causes collateral damage, i.e., interferes with com-

munication outside China. A similar DNS-related study, also by anonymous authors,

was done in 2014 [11]. The authors attempted to localize the DNS injectors’ location,

extracted the GFW’s DNS blacklist, and used side channel’s in the GFW’s design to

estimate its design. Most work discussed so far treated the firewall as a monolithic

entity. Wright showed in 2012 that there are regional variations in DNS poisoning,

thus suggesting that censorship should be investigated on a more fine-grained level

with attention to geographical diversity in measurements [109]. In addition to DNS

and HTTP, the GFW is known to block the Tor anonymity network. Using a VPS

in China, Winter and Lindskog [107] investigated how the firewall’s active probing

infrastructure is used to dynamically block Tor bridges.

6.3 Summary

To summarize, my dissertation work is the first work to enable measuring connectiv-

ity between two hosts on the Internet without having access to either of those hosts

or being in the path between them. Idle scans, and, in general, TCP/IP side chan-

nels, offer many opportunities for Internet measurement. The aim of my dissertation
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work is to serve as a foundation for this nascent research area.
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Ethical Considerations

This thesis proposes several experiments which involve sending unsolicited traffic to

computers on the Internet. In particular, we proposed two types of experiments

which require further discussion of potential ethical issues.

The first experiment is the SYN backlog scan which is discussed in Section 5.4.2.

The backlog scan briefly fills the SYN backlog of a Tor relay in order to be able to

determine if packets are dropped on their way to the relay. As long as the backlog

does not become completely full, no harm is done. If however, the backlog is filled

entirely, a computer would begin using SYN cookies [16] which reduces the through-

put of TCP connections. To minimize the chance of harming a computer or network

while scanning it, we carefully crafted the parameters of our scans to make them as

uninvasive as possible. As a result, it is very unlikely that our experiments ever fill

a computer’s SYN backlog.

The second experiment which should be discussed are our idle scans which create

unsolicited traffic between two computers. A passive adversary observing an idle scan

could believe that the two scanned machines are deliberately communicating with

each other. This could have negative consequences if a censor believes that a user is
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communicating with a sensitive or forbidden IP address. However, it is unlikely that

a censor would come to such a conclusion as the client-to-server traffic consists only of

RST segments and the server-to-client traffic only consists of SYN/ACK segments.

An adversary would not witness a full TCP handshake, let alone any actual data

transfer. As a result, we believe that it is unlikely that a censor would consider our

idle scans to be malicious. Nevertheless, we stress that these experiments should

only be carried out after assessing the political situation in the respective country

and verifying that something as simple as TCP connections are unlikely to lead to

political consequences.

Durumeric et al. [30] provide a more comprehensive ethics discussions of Internet

scans in general. The work in this thesis follows these best practices. The Menlo

report [29] proposes a framework for ethical guidelines for computer and information

security research based on the 1979 Belmont report [85]. Wright et al. [109] attempt

to start a discussion about the potentially significant ethical and legal concerns which

are often faced in censorship measurement.

More related to networking research, Allman and Paxson [9] discuss issues around

sharing network measurement data. The authors suggest a set of guidelines which

should be followed when providing data as well as when using provided data. When

it comes to raw network traces produced by TCP/IP side channel scans such as in

this thesis, there are a number of tradeoffs to consider when releasing the data. By

obfuscating the IP address, but not the network that the IP is on and other important

topological information, various risks could be reduced without reducing the value of

the data. For example, the risk that listing the IPs of the clients makes them targets

for future studies could be mitigated through obfuscation. On the other hand, if

there is a risk that network administrators will mistakenly attribute communication

attempts to the client, having the raw data available through the IP address of

the measurement machine along with an explanation of data collection can help the
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owners of client machines to make the case that they did not initiate communication.

We leave a release of our raw data and the associated ethical concerns for future

work.
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Conclusion and Future Work

The thesis statement that this dissertation began with is: because modern network

stacks have shared resources, there is a wealth of information that can be inferred

off-path by both attackers and Internet measurement researchers.

We showed that current designs of network protocols are susceptible to side chan-

nels that leak information. We built practical methods—in the form of idle scans—

that employ shared resources to learn about the communication status between re-

mote hosts. In particular, we presented and evaluated a novel side channel based on

the Linux kernel’s SYN backlog which enables indirect detection of packet loss. We

then explained our hybrid idle scan which is a non-intrusive method for detecting

intentional packet drops between two IP addresses on the Internet where neither is a

measurement machine. We applied intervention analysis based on an autoregressive-

moving-average model to increase the practicality of our techniques even in the face

of traffic noise. We then described the real-world application of the SYN backlog

and hybrid and idle scans to a large-scale Internet measurement problem in which

we measured the connectivity between the Tor anonymity network and clients in

China. These techniques enabled us to increase the community’s understanding of
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how the GFW is architected and how its blocking of the Tor network looks from

different clients all over China. Thus the above thesis statement was demonstrated

to be true.

8.1 Future Work

The research presented in this thesis can be continued in many directions. With

respect to ethical concerns, we plan to explore the idea of using routers with a global

IPID as a client. That way, no individual end user can possibly experience negative

consequences for unsolicited traffic, which would make our measurements even safer

for users. We conducted an initial and promising study to investigate the possibility

of finding global IPID routers. A more detailed experiment needs to be performed,

however.

Another research direction can be to analyze censorship for popular domains

using side channels. The goal could be to create a comprehensive, real-time, and

global view of the censorship of popular domains which also makes it possible to

compare censorship incidents of countries. Only by using side channels, especially idle

scans, are we able to use geographically distributed machines, and we are no longer

limited to controlling limited vantage points. Such a system could be a significant

contribution to longitudinal censorship measurement systems. Such longitudinal

studies are essential to understand global trends in Internet censorship practices.

With respect to the Great Firewall of China, we were able to prove and disprove

several hypotheses about its architecture. However, numerous questions still remain

unanswered, e.g.: 1) what role does BGP and routing in general play in the GFW?,

2) why does the GFW (mostly) only filter SYN/ACKs coming into the country from

Tor relays, but not SYNs or RSTs going out?, 3) are the routers that drop a Tor

relay’s SYN/ACKs the same routers that have port mirroring and do deep packet
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inspection?, 4) how and when is the GFW obtaining the Tor network consensus?, 5)

is active probing also happening for Tor relays?, and 6) has the blocking changed in

the past two years?

Finally, recall that our techniques are currently limited to testing basic IP con-

nectivity. Thus, we can only detect censorship on lower layers of the network stack,

i.e., before a TCP connection is even established. To overcome this limitation, fu-

ture work could focus on finding more side channels that can be used in higher layers

of the network stack. Such side channels would significantly improve measurement

flexibility and enable an entirely new array of measurements.
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