
A Case Study in Helping Students to Covertly Eat Their Classmates

Roya Ensafi, Mike Jacobi, and Jedidiah R. Crandall
University of New Mexico,
Dept. of Computer Science

{royaen, crandall}@cs.unm.edu; mikerjacobi@gmail.com

Abstract
Werewolves is an online version of the game Werewolves
of Miller’s Hollow that we developed in 2012 to help
teach information flow in a computer security and pri-
vacy class. The game pits werewolves against townspeo-
ple in a shared Linux system, where students must use
the command line environment to find information flow
leaks in the form of side channels that reveal the were-
wolves’ identities.

Werewolves has many desirable traits, such as the abil-
ity to make learning about information flow fun and the
fact that the kinds of attacks students can carry out to gain
an advantage in the game are open ended, which leads
to self-guided learning. However, these benefits quickly
deteriorate if one or two students dominate the game. In
this paper, we discuss instances where this has occurred
through several uses of the game, and propose ways to
ameliorate this problem.

1 Introduction

In 1961 programmers at Bell Labs created Darwin [14],
a programming game where competing programs were
loaded into an arena and dueled in a survival of the fittest
type scenario. The game is no longer played because sev-
eral programs were developed which were too dominant.
A similar game called Core War [8], released in 1984, at-
tracts players of all skill levels to compete in tournaments
and develop their skills to this day. Why do some games
devolve into one-sided, non-competitive exercises in fu-
tility while others evolve into competitive games where
players learn together and stay engaged for long periods
of time?

In Ensafi et al. [9] we described a game called Were-
wolves, an online version of The Werewolves of Miller’s
Hollow (a variant of Mafia). From that paper: “Were-
wolves is a party game in which participants are divided
into two groups: werewolves and townspeople. The

goal of the game is to eliminate members of the oppos-
ing group. Werewolves can eat townspeople at night.
They are outnumbered but know each others’ identities.
Townspeople vote for who to hang as a suspected Were-
wolf each day. Werewolves act as normal townspeople
during the day, so they are part of this discussion and vot-
ing process. While townspeople are given an advantage
in their numbers, they do not know the identities of the
werewolves among them so they must rely on inference.”

Since the publication of that paper we have gained
more experience with using Werewolves in two classes
and two series’ of club meetings1. While Werewolves
has been a positive and educational experience for stu-
dents in general, vulnerabilities discovered in the server
and decisive tactics developed by students have led to sit-
uations where one or two students (or one or two groups)
dominate the game. This paper describes the different
cases where this has occurred and discusses future plans
and proposed strategies for avoiding these scenarios in
the future via careful development of Werewolves.

The learning objective of Werewolves depends on the
group of students. For younger groups (e.g., high school)
and more general groups of students, the objective is for
the students to become adept at using the Linux com-
mand line and to understand a wide variety of hacking
and vulnerability concepts, including side channels. For
upper-level and graduate courses on Cybersecurity the
objective is for students to be able to understand concepts
in the research literature about information flow and side
channels and be able to explore the system in a system-
atic way to discover new side channels.

In this paper, we describe our experiences using Were-
wolves for a variety of learning tasks. Specifically, the
learning objectives above have not been fully realized be-
cause a typical Werewolves game consists of one student
(or group) dominating the game by easily identifying all
of the werewolves. This makes the game less fun for
the other players, and disincentivizes them from devel-
oping new tactics (e.g., searching for new side channels

1

or developing mitigations to hide their activities when
they are werewolves) because they do not know how the
dominant player or group is so readily identifying the
werewolves.

These scenarios arise because of two different issues:
server vulnerabilities and decisive tactics. Server vul-
nerabilities are software bugs in the Werewolves server
that reveal the werewolves’ identities in ways that the
werewolves cannot counter. For example, if the server
logs the werewolves’ identities in a file that is supposed
to be non-world-readable and a vulnerability in the way
the server handles that file makes it possible for towns-
people to read the file, then no strategy adopted by the
werewolves can stop their identities from being revealed
until the server bug is fixed. Decisive tactics, on the other
hand, can be countered by the werewolves but only if the
werewolves understand them. For example, if a group is
able to observe network socket activity, then other groups
could possibly counter by using different TCP socket op-
tions when they log in or developing a custom UDP-
based client—but his can only happen once they realize
that TCP socket information is how their classmates are
able to identify them.

These two separate issues share some characteristics,
but they are distinct in some ways, as well. In both cases,
mitigations are necessary until the problem can be ad-
dressed. For example, students who are dominating the
game because they can easily find the werewolves can
be forced to be werewolves for several games. However,
while server vulnerabilities can be fixed by the moder-
ators to level the playing field, decisive tactics may re-
quire significant effort by other students to develop an
effective counter strategy. Our hope is that through read-
ing this paper that describes our experiences with Were-
wolves the Cybersecurity gaming community can help us
make progress towards understanding what can make a
game like Werewolves have continued engagement from
all students.

The focus of Werewolves is side channels. In our on-
line version (please refer to Ensafi et al. 2012 [9] for
more details) the role of the fortune teller (i.e., the player
in the traditional Werewolves game that can gain partial
information each night about which players are Were-
wolves) is removed so that only through side channels
in the Linux operating system can the townspeople in-
fer the identities of the werewolves. A covert channel
is a flow of information that violates a written or im-
plied information flow policy. Covert channels exploit
communication channels that were not intended for com-
munication by the system’s designers. Typically, with
covert channels it is assumed that the sender and re-
ceiver of the information are in collusion. Specifically,
the source of the information is a subject that wants to
transmit the information through the channel. Side chan-

nels [16, 23, 10, 19, 24, 2, 20, 6, 18, 12] are different in
that the secret information is accidentally modulated into
timing, storage, or resource usage of the system in a way
that the receiver of the information can infer information
that they should not have access to.

This paper is organized as follows. Section 2 dis-
cusses vulnerabilities in the Werewolves server, followed
by Section 3 that discusses decisive tactics. Discussion
and potential future work are in Section 4, followed by
the conclusion in Section 5.

2 Vulnerabilities in Server

In this section, we describe vulnerabilities in the server
that made it possible to discover the werewolves in a
way that the werewolves could not counter2. This hap-
pens because the server reveals the werewolves’ identi-
ties. The descriptions of all vulnerabilities found in the
Werewolves source code so far are in Table 1. We note
that this source code was developed in a matter of weeks,
mid-semester, so we only had time to add functionality
and no time for code review or testing with respect to
security properties. In fact, we hoped that vulnerabili-
ties would exist in version 1.0 of the Werewolves code
because it would give students in the class something to
find.

One vulnerability was identified and fixed before
Werewolves was used or released: the pipe stat() vul-
nerability. This is classified as a vulnerability and not a
decisive tactic because the werewolves must interact with
the server through their assigned named pipe, so with-
out fixing this issue the werewolves would have no way
of hiding writes to this pipe. Another vulnerability was
known, but not fixed in all cases in versions 1.0 and 1.1
of the server: the pipe transitions vulnerability.

Another vulnerability was discovered independently
by two students in the original semester when Were-
wolves was used in class: the server process creation vul-
nerability. This led to two groups in the class dominating
every game of Werewolves, and was a major motivation
for us to subsequently be more proactive about finding
and fixing vulnerabilities in the server. Also, for us it
underscored the need for mechanisms to mitigate vulner-
abilities and decisive tactics until they can be dealt with
in a more effective way.

The server race condition vulnerability was discovered
when the capture-the-flag team ENOFLAG in Germany
played Werewolves and gave us feedback. In this vul-
nerability, a moderator-only log file was created and then
permissions were set to keep players from reading it. The
moderator’s log file contained the identities of the were-
wolves. By opening the file after creation but before per-
missions were changed, a player could gain read access
to the file and know the identities of the werewolves. Be-

2

Vulnerability name Description Discovered by
Pipe stat() In Linux, stat()ing a named pipe reveals the last time the pipe

was accessed. If users are able to stat() the named pipe of
all players in the game, they can know when the werewolves’
read and write pipes are being used through changes in the last
access time. Version 1.0 fixed this before Werewolves was used
or released, by putting each named pipe in its own protective
directory (that other users could not stat() files in).

Authors

Pipe transitions The scheduler state of processes is visible to all users. By mon-
itoring what processes are in the pipe wait state players can
know every time the server sends a message to particular users.
In some cases in versions 1.0 and 1.1 the server wrote a mes-
sage to the werewolves only and did not send a message to other
players at the same time, revealing the identities of the were-
wolves. This is fixed in version 1.2.

Matthew Hall

Server process creation To write into a player’s pipe, version 1.0 of the server would
fork a bash process with the command “echo "Message"
> /path/to/pipe”. Since the arguments of all processes
in the system are visible to all users, this revealed all messages
the server sent to any player. This was fixed in version 1.1 by
opening the file and writing to it from the Python process.

Alex Woody and
Brian Lott

Server race condition Upon creating the log file for each game, the file was first
touched and then chmoded in version 1.0. Any user who
opens the file in between these operations and keeps it open can
still read the log file after the chmod. This was fixed in version
1.1.

Jakob Lell and the
ENOFLAG team

Various command injec-
tion vulnerabilities

Because inputs were passed to a bash shell process unfiltered,
characters such as ;, |, &, and ‘ could cause the server pro-
cess (running with moderator privileges) to execute arbitrary
commands injected by players. An attempted fix was made in
version 1.1 through string sanitization, but did not stop all com-
mand injections. Version 1.2 opens the pipes, writes to them,
and flushes the output, rather than invoking a shell command in
a child process.

Geoff Reedy,
Jeffrey Knockel,
Geoff Alexander,
and Stephen
Harding

Multiple votes Due to a logic error, the server counts the total number of votes
to make sure it does not exceed the number of players, but al-
lows players to vote multiple times. This vulnerability will be
fixed in the soon-to-be-released version 1.3.

Stephen Harding

Voting ties Due do a logic error in the server source code, a tie that results
in a vote leads to the werewolves’ identities being printed in the
world readable log file. This vulnerability will be fixed in the
soon-to-be-released version 1.3.

Stephen Harding

Table 1: Server vulnerabilities.

3

cause this was a classic filesystem race condition vulner-
ability and relatively easy to exploit, we added the ability
to leave the vulnerability in place into the Werewolves
configuration file. Several other vulnerabilities that have
been fixed can be re-enabled.

Various command injection vulnerabilities existed be-
cause the server would fork a bash shell to inter-
pret a string as a command, such as “echo $1 >
/path/to/pipe”, where $1 is unsanitized input from
one of the players. This allowed students to run arbitrary
code as the moderator user, and to then carry out attacks
such as copying the moderator’s private log file (which
included the identities of all werewolves) into their own
home directory, for example. The first attempt to fix this
vulnerability was to filter out characters that could cause
a command to be broken up into multiple, independent
commands. This failed and students were still able to
find ways to exploit the vulnerability. The vulnerabil-
ity was ultimately fixed by simply opening files or pipes,
writing to them, and then flushing the output buffer, with-
out using any child processes such as bash.

Two vulnerabilities existed in versions 1.0 through 1.2
of the Werewolves source code, but will be fixed in the
soon-to-be-released version 1.3. The multiple votes vul-
nerability exists because, when collecting the vote for
which player to hang, the server counts the total votes
to make sure they do not exceed the number of living
players, but does not count the number of votes any one
player casts. So by quickly casting all the votes a single
player can control who is hanged each day. This vul-
nerability is actually more useful to the werewolves than
to the townspeople, but in any case it led to a situation
where one player dominated the game and the other play-
ers benefited less from playing Werewolves. The vot-
ing ties vulnerability is a logic error where any vote that
results in a tie causes the werewolves’ identities to be
printed into a world-readable log file.

The vulnerabilities discovered so far in Werewolves
can be divided into three classes: server information that
is made visible to users other than the moderator (Pipe
stat(), Pipe transitions, and Server process creation),
classic vulnerabilities (Server race condition and Vari-
ous command injection vulnerabilities), and logic errors
(Multiple votes and Voting ties). Logic errors and clas-
sic vulnerabilities can be addressed in traditional ways,
such as code reviews and sanitization of untrusted in-
puts. Server information that is made visible to users
other than the moderator is a class of vulnerability that
is particular to Werewolves. There is an ongoing effort
to create a set of test cases that have slight differences
(e.g., who the werewolves are) where two traces through
the game with slightly different configurations should
be indistinguishable by users who are not moderator
or root. By viewing the two respective system call

traces it can be determined if any externally visible dif-
ferences in the system state will be created based on
secret information. This is based on the idea of non-
interference [11], and will help to identify server vulner-
abilities and fix them systematically.

3 Decisive tactics

In this section, we describe decisive tactics for revealing
the identities of the Werewolves that are not due to vul-
nerabilities in the server. This presents a very different
challenge from server vulnerabilities.

The TCP socket info tactic is discussed in our CSET
paper [9] and was known to us before the first use of
Werewolves in a class. Here we give more details. For
SSH sessions, it is possible to infer keystrokes and other
network activity in a way that is specific to individ-
ual network sockets by looking for resets in the TCP
keepalive timers for each socket:

while : ; do netstat -an --timer | grep ":22" \
| grep "(0" | grep -v LISTEN; sleep 0.1; done

This bash command repeatedly lists all TCP timers for
sockets connected to the SSH server on the system, and
filters these to list only those that have been recently reset
(i.e., the most significant digit in seconds since the reset
is 0 indicating that the reset happened less than one sec-
ond ago). Since tying user names to IP addresses is rela-
tively easy (e.g., who --ips), the TCP socket info tac-
tic allows one to fairly accurately infer all the keystrokes
of all other players. It could potentially be mitigated by
creating a custom UDP socket, playing with TCP socket
options of the SSH connection, or obfuscating which IP
belongs to a user by forking new processes and using in-
direct interprocess communication. However, the TCP
socket tactic, as far as we know, has never been used by
any group to dominate in the Werewolves game.

The context switches tactic is also discussed in the
CSET paper [9], and is typically the first example of a
covert inference channel attack that we show to students.
It has not led to any players dominating the game because
it is too noisy of a signal in practice when many players
are playing. Many players are typing commands or tak-
ing measurements during the night phase even if they are
not werewolves, so that all players make a lot of system
calls at night.

Although the client ID was technically a server vul-
nerability, we classify it as a decisive tactic because it
did not directly reveal the werewolves’ identities. Ver-
sion 1.0 of the server and client allowed clients to specify
their identity, and this was not checked by the server. A
group exploited this to print messages such as, “I am a
werewolf” using the identities of other users. This also
never led to any player dominating the game.

4

Vulnerability name Description Discovered by
TCP socket info The timeout state of every TCP socket is visible to all users of

a system in Linux. Thus every keystroke through the terminal
SSH session to every player’s shell is visible.

N/A

Context switches Every write to a pipe, keystroke, etc. appears as a voluntary
context switch in one of the player’s processes.

N/A

Client ID The server did not perform checks on the inputs from players to
make sure that they had not modified their client to hide/spoof
their identity.

Matthew Areno

pty permissions Every keystroke updates the access and modification times of
the pty associated with a user’s shell. Since the pty is visible
to all other users this reveals keystroke timings.

Geoff Reedy

Table 2: Decisive tactics.

The pty permission tactic was discovered during a
code review, but the student who discovered it never had
a chance to use it in a game. It would probably allow a
player to dominate the game, but it is also fairly easy
to fix. To hide information leaks through the pty a
player should SSH into the server with ssh -T to dis-
able pseudo-tty allocation. This creates a shell that is
difficult to use, but prevents other players from infer-
ring every keystroke. Another possibility might be for
players to run a script that touch’s their pty with an
exponential distribution. This particular decisive tactic
is a good opportunity to introduce the ideas of Kang
and Moskowitz, who describe a pump for reducing in-
formation flow that has an interesting information the-
oretic basis [13]. It can also be an opportunity to talk
about different ideas of information flow that go beyond
non-interference [21, 3, 4, 7, 15, 17], and ways to toler-
ate/mitigate information flow [1, 5, 22].

4 Discussion

From our experiences with both server vulnerabilities
and decisive tactics, we make the following observations:

• So far, only server vulnerabilities have led to situ-
ations where one player completely dominated the
game. Some decisive tactics have the potential for
this to occur, but it has not occurred yet.

• For both server vulnerabilities and decisive tactics,
mitigation techniques are needed to keep the game
competitive until there has been enough time to fix
the vulnerability or help students overcome a deci-
sive tactic.

• In both cases, mechanisms for the moderators to
discover and understand the vulnerability or tactic
are key.

Next, we discuss mitigation strategies to keep the
game competitive in the presence of vulnerabilities that
are being exploited or decisive tactics that are allowing
one player to dominate the game. Then we discuss po-
tential surveillance and forensic mechanisms that can be
used by the moderator to gain information about server
vulnerabilities and decisive tactics.

4.1 Mitigation

One potential mitigation that we implemented in Were-
wolves version 1.1 but have not yet used is to random-
ize names, so that names in the game cannot easily be
tied to usernames on the system. If a vulnerability re-
veals the usernames of the werewolves, then other play-
ers must still use inference channels to tie this username
to a name in the game. This might have been useful in
the first four out of the seven vulnerabilities in Table 1,
and three out of four decisive tactics in Table 2. This
can also make it challenging for the student dominating
the game to convince the other townspeople about who
the werewolves are, because their identity changes in ev-
ery game and other players (especially the werewolves)
may pretend to be the student who knows how to find the
werewolves.

A mitigation strategy that we implemented in version
1.1 and have used extensively is the ability for the mod-
erator to choose who the Werewolves will be at the start
of each game. This was sometimes useful, because play-
ers who knew methods for finding the werewolves were
forced to be the werewolves and all players were put
back onto relatively equal footing. We did not employ
this strategy in the long-term, so it did not become nec-
essary to combine this with the randomized name miti-
gation technique from above, but in the future that might
be useful. For the multiple votes vulnerability, forcing
the player who was exploiting this vulnerability to be a
werewolf did not help because he simply used the vul-

5

nerability to hang townspeople at will and win the game
twice as fast (by eating one townsperson each night and
hanging one each day).

We have also experimented with various changes to
the game rules. One is to require that the werewolves
vote unanimously in order to eat somebody. Coupled
with hiding each werewolf’s vote from the other were-
wolves, this can force the werewolves to have at least
some discussion at night. It is not clear if similar rule
changes can help the werewolves when one player knows
their identities (because of a vulnerability or decisive tac-
tic). One strategy werewolves have employed is to eat the
player they know will find out their identities in the first
night, but the witch usually saves the player with the po-
tion (the witch is a special townsperson whose abilities
include saving a townsperson once with a potion, refer to
Ensafi et al. [9] for more information).

One issue that we have not addressed is out-of-band
communication amongst players. Players can use ytalk,
shared files, covert channels, and other aspects of the
game server to communicate in secret outside the game,
as well as verbal communications, cell phone text mes-
sages, and other forms of communication that do not
even involve the server. Any mitigation strategy that at-
tempted to silence in some way the student who knows
the identities of the werewolves would have to address
these out-of-band communications.

Another potential mitigation strategy is that the stu-
dent(s) who is/are dominating the game could be offered
an incentive to collude with the moderator. The goal of
this collusion could be, e.g., to ensure that a particular
player is the last and only player left in the game at the
end. This would give the dominating player an incentive
to help both the townspeople and the werewolves.

4.2 Discovery

To reduce the amount of time between when one student
or group discovers a vulnerability in the server or a de-
cisive tactic and when the issue is addressed fully, the
moderator needs mechanisms for discovering and under-
standing exploits and decisive tactic implementations.

One mechanism for this might be to make disclosure
of vulnerabilities and decisive tactics before their use in
a game carry a larger reward than winning games. Then
the issue can be addressed before it is used in a game,
the student who discovered it could be allowed to use it
in one or two games to illustrate it, and then they could
inform the other students about it and how to counter it.

Another mechanism is that the moderator, who also
has root access on the system, can spy on all players.
This can include copying their home directory and ana-
lyzing any scripts found, reading their shell histories, or
attaching to their screen sessions, for example. We have

employed this to some extent, but have not found it to
be as effective as it could be because there is a lot of
information to sort through. Automated tools to aid in
this process would be helpful. Note that we always tell
students that they have no expectation of privacy on the
Werewolves server, not even for passwords.

5 Conclusion

In conclusion, we have described the various cases so far
where a vulnerability in the Werewolves server or a deci-
sive tactic strategy caused a student or group of students
to dominate the game. Werewolves has the potential to
be a powerful and fun tool for teaching computer and in-
formation security and privacy, but in order for the game
to remain fun and educational it must remain competi-
tive. Thus we proposed various mitigation strategies that
we plan to implement.

In the broader context, for any security-related game
where students are pitted directly against each other in a
strategic and tactical way, maintaining competitiveness
so that all students can learn and have fun will be a
challenge. Capture-the-flag contests are often based on
points and a fixed set of “puzzles.” This keeps students of
all skill levels engaged, but there are certain advantages
to pitting students directly against each other. One key
advantage is that games like Werewolves are open-ended,
meaning that there are no limits on what students can ex-
plore and teach themselves in order to gain an advantage
in the game. Fundamentally, for games like Werewolves
the game itself and the players must evolve for the game
to remain competitive, and the trick will be how to en-
courage this evolution and make sure it can happen in a
timely manner.

We draw inspiration from the success of Core War,
where continual evolution of the game and ways to en-
gage players at all skill levels has led to a successful
game with a vibrant community. It is our hope that by
further developing the Werewolves game we can also al-
low for evolution of the game and a community of play-
ers.

6

Acknowledgments
We would like to thank all of the tasty people who

shared vulnerabilities and other insights about Were-
wolves with us, all of the savory students who have
played Werewolves, all of our appetizing colleagues at
CSET 2012 and other venues that have given us feed-
back, Jörg Schneider and all the scrumptious members
of the ENOFLAG team, and the delectable anonymous
reviewers for 3GSE. John Montoya and Tim C’de Baca
helped us to understand the logic errors in the Were-
wolves server and are helping to develop version 1.3.
The UNM Department of Computer Science supported
Mike Jacobi with a teaching assistantship during the de-
velopment of Werewolves. This material is based upon
work supported by the National Science Foundation un-
der Grant Nos. #0844880, #0905177, #1017602, and
#1314297.

References

[1] ASKAROV, A., ZHANG, D., AND MYERS, A. C.
Predictive black-box mitigation of timing chan-
nels. In Proceedings of the 17th ACM conference
on Computer and communications security (New
York, NY, USA, 2010), CCS ’10, ACM, pp. 297–
307.

[2] BERNSTEIN, D. J. Cache-timing attacks on AES.
http://cr.yp.to, 2005.

[3] BROWNE, R. The Turing test and non-information
flow. In IEEE Symposium on Security and Privacy
(1991), pp. 373–388.

[4] BROWNE, R. An entropy conservation law for test-
ing the completeness of covert channel analysis. In
CCS ’94: Proceedings of the 2nd ACM Conference
on Computer and Communications Security (New
York, NY, USA, 1994), ACM Press, pp. 270–281.

[5] BROWNE, R. Mode security: An infrastructure for
covert channel suppression. In IEEE Symposium on
Security and Privacy (1999), pp. 39–55.

[6] BRUMLEY, D., AND BONEH, D. Remote timing
attacks are practical. Comput. Netw. 48, 5 (Aug.
2005), 701–716.

[7] CLARKSON, M. R., MYERS, A. C., AND
SCHNEIDER, F. B. Belief in information flow. In
CSFW ’05: Proceedings of the 18th IEEE Com-
puter Security Foundations Workshop (CSFW’05)
(Washington, DC, USA, 2005), IEEE Computer
Society, pp. 31–45.

[8] DEWDNEY, A. Computer Recreations. Scientific
American, 250, 5, 14-22, May, 1984 (and generally
1984-86).

[9] ENSAFI, R., JACOBI, M., AND CRANDALL, J. R.
Students who don’t understand information flow
should be eaten: An experience paper. In CSET
12: Proceedings of the 5th USENIX Workshop on
Cybersecurity Experimentation and Test (2012).

[10] ENSAFI, R., PARK, J. C., KAPUR, D., AND
CRANDALL, J. R. Idle port scanning and non-
interference analysis of network protocol stacks us-
ing model checking. In Proceedings of the 19th
USENIX conference on Security (Berkeley, CA,
USA, 2010), USENIX Security’10, USENIX As-
sociation, pp. 17–17.

[11] GOGUEN, J. A., AND MESEGUER, J. Unwinding
and inference control. In IEEE Symposium on Se-
curity and Privacy (1984), pp. 75–86.

[12] JANA, S., AND SHMATIKOV, V. Memento: Learn-
ing secrets from process footprints. In Proceedings
of the 33nd IEEE Symposium on Security & Privacy
(San Francisco, CA, May 2012).

[13] KANG, M. H., AND MOSKOWITZ, I. S. A
pump for rapid, reliable, secure communication. In
CCS ’93: Proceedings of the 1st ACM conference
on Computer and Communications Security (New
York, NY, USA, 1993), ACM Press, pp. 119–129.

[14] MCILROY, M. D., MORRIS, R., AND VYSSOT-
SKY, V. A. Darwin, a game of survival of the fittest
among programs. Available at http://www.
cs.dartmouth.edu/˜doug/darwin.pdf.

[15] MILLEN, J. K. 20 years of covert channel model-
ing and analysis. In IEEE Symposium on Security
and Privacy (1999), pp. 113–114.

[16] PERCIVAL, C. Cache missing for fun and profit,
2005. http://www.daemonology.net/
hyperthreading-considered-harmful/.

[17] PROCTOR, N. E., AND NEUMANN, P. G. Ar-
chitectural implications of covert channels. In
Fifteenth National Computer Security Conference
(October 1992), pp. 28–43.

[18] QIAN, Z., AND MAO, Z. M. Off-path TCP se-
quence number inference attack – how firewall
middleboxes reduce security. In Proceedings of the
33nd IEEE Symposium on Security & Privacy (San
Francisco, CA, May 2012).

7

[19] SHAH, G., MOLINA, A., AND BLAZE, M. Key-
boards and covert channels. In USENIX Security
Symposium 2006 (2006).

[20] SONG, D. X., WAGNER, D., AND TIAN, X. Tim-
ing analysis of keystrokes and timing attacks on
SSH. In USENIX Security Symposium 2001 (2001).

[21] SUTHERLAND, D. A model of information. In
Proceedings of the 9th National Computer Security
Conference (1986).

[22] YUMEREFENDI, A., MICKLE, B., AND COX,
L. P. TightLip: Keeping applications from spilling
the beans. In Networked Systems Design and Im-
plementation (NSDI) (2007).

[23] ZALEWSKI, M. Silence on the Wire. No Starch
Press, Inc., San Francisco, CA, 2005.

[24] ZHANG, K., AND WANG, X. Peeping Tom in the
neighborhood: keystroke eavesdropping on multi-
user systems. In Proceedings of the 18th con-
ference on USENIX security symposium (Berkeley,
CA, USA, 2009), SSYM’09, USENIX Association,
pp. 17–32.

Notes
1CS 444/544 Introduction to Cybersecurity Spring 2013 at the Uni-

versity of New Mexico (UNM), CS 491/591 Computer Security and
Privacy at UNM, a short-lived “Werewolves Club” at UNM, and the
capture-the-flag team ENOFLAG in Germany.

2At this point in the paper authors Jed Crandall and Roya Ensafi
would like to note that Mike Jacobi deserves all of the credit for devel-
oping versions 1.0 and 1.1 of the Werewolves source code.

8

